

Draft NIST Special Publication 800-218 1

Secure Software Development 2

Framework (SSDF) Version 1.1: 3

Recommendations for Mitigating the Risk of Software 4

Vulnerabilities 5

 6

Murugiah Souppaya 7

Karen Scarfone 8

Donna Dodson 9

 10

 11

 12

 13

This publication is available free of charge from: 14

https://doi.org/10.6028/NIST.SP.800-218-draft 15

 16

 17

 18

19

Draft NIST Special Publication 800-218 20

Secure Software Development 21

Framework (SSDF) Version 1.1: 22

Recommendations for Mitigating the Risk of Software 23

Vulnerabilities 24

Murugiah Souppaya 25

Computer Security Division 26

Information Technology Laboratory 27

 28

Karen Scarfone 29

Scarfone Cybersecurity 30

Clifton, VA 31

 32

Donna Dodson* 33
* Former NIST employee; all work for this publication was done while at NIST. 34

 35

 36

This publication is available free of charge from: 37

https://doi.org/10.6028/NIST.SP.800-218-draft 38

 39

 40

September 2021 41

 42
 43

 44
 45

U.S. Department of Commerce 46
Gina M. Raimondo, Secretary 47

 48
National Institute of Standards and Technology 49

James K. Olthoff, Performing the Non-Exclusive Functions and Duties of the Under Secretary of Commerce 50
for Standards and Technology & Director, National Institute of Standards and Technology 51

Authority 52

This publication has been developed by NIST in accordance with its statutory responsibilities under the 53
Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C. § 3551 et seq., Public Law 54
(P.L.) 113-283. NIST is responsible for developing information security standards and guidelines, including 55
minimum requirements for federal information systems, but such standards and guidelines shall not apply 56
to national security systems without the express approval of appropriate federal officials exercising policy 57
authority over such systems. This guideline is consistent with the requirements of the Office of Management 58
and Budget (OMB) Circular A-130. 59

Nothing in this publication should be taken to contradict the standards and guidelines made mandatory and 60
binding on federal agencies by the Secretary of Commerce under statutory authority. Nor should these 61
guidelines be interpreted as altering or superseding the existing authorities of the Secretary of Commerce, 62
Director of the OMB, or any other federal official. This publication may be used by nongovernmental 63
organizations on a voluntary basis and is not subject to copyright in the United States. Attribution would, 64
however, be appreciated by NIST. 65

National Institute of Standards and Technology Special Publication 800-218 66
Natl. Inst. Stand. Technol. Spec. Publ. 800-218, 31 pages (September 2021) 67

CODEN: NSPUE2 68

This publication is available free of charge from: 69
https://doi.org/10.6028/NIST.SP.800-218-draft 70

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 71
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 72
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 73
available for the purpose. 74

There may be references in this publication to other publications currently under development by NIST in accordance 75
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, 76
may be used by federal agencies even before the completion of such companion publications. Thus, until each 77
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For 78
planning and transition purposes, federal agencies may wish to closely follow the development of these new 79
publications by NIST. 80

Organizations are encouraged to review all draft publications during public comment periods and provide feedback to 81
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 82
https://csrc.nist.gov/publications. 83

Public comment period: September 30, 2021 through November 5, 2021 84

National Institute of Standards and Technology 85
Attn: Computer Security Division, Information Technology Laboratory 86

100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 87
Email: ssdf@nist.gov 88

 All comments are subject to release under the Freedom of Information Act (FOIA). 89

https://csrc.nist.gov/publications
mailto:ssdf@nist.gov

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

ii

Reports on Computer Systems Technology 90

The Information Technology Laboratory (ITL) at the National Institute of Standards and 91

Technology (NIST) promotes the U.S. economy and public welfare by providing technical 92

leadership for the Nation’s measurement and standards infrastructure. ITL develops tests, test 93

methods, reference data, proof of concept implementations, and technical analyses to advance 94

the development and productive use of information technology. ITL’s responsibilities include the 95

development of management, administrative, technical, and physical standards and guidelines for 96

the cost-effective security and privacy of other than national security-related information in 97

federal information systems. The Special Publication 800-series reports on ITL’s research, 98

guidelines, and outreach efforts in information system security, and its collaborative activities 99

with industry, government, and academic organizations. 100

Abstract 101

Few software development life cycle (SDLC) models explicitly address software security in 102

detail, so secure software development practices usually need to be added to each SDLC model 103

to ensure that the software being developed is well-secured. This document recommends the 104

Secure Software Development Framework (SSDF) – a core set of high-level secure software 105

development practices that can be integrated into each SDLC implementation. Following these 106

practices should help software producers reduce the number of vulnerabilities in released 107

software, mitigate the potential impact of the exploitation of undetected or unaddressed 108

vulnerabilities, and address the root causes of vulnerabilities to prevent future recurrences. 109

Because the framework provides a common vocabulary for secure software development, 110

software purchasers and consumers can also use it to foster communications with suppliers in 111

acquisition processes and other management activities. 112

 Keywords 113

secure software development; Secure Software Development Framework (SSDF); secure 114

software development practices; software acquisition; software development; software 115

development life cycle (SDLC); software security. 116

Trademark Information 117

All registered trademarks or trademarks belong to their respective organizations. 118

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

iii

Acknowledgments 119

The authors thank all of the organizations and individuals who provided input for this update to 120

the SSDF. In response to Section 4 of Executive Order (EO) 14028 on “Improving the Nation’s 121

Cybersecurity,” NIST held a June 2021 workshop and received over 150 position papers, many 122

of which suggested secure software development practices, tasks, examples of implementations, 123

and references for consideration for this SSDF update. The authors appreciate all of those 124

suggestions, as well as the inputs from those who spoke at the workshop or attended the 125

workshop and shared their thoughts during or after the workshop. 126

The authors also wish to thank all of the individuals and organizations who provided comments 127

on drafts of the original version of the SSDF, including the Administrative Offices of the U.S. 128

Courts, The Aerospace Corporation, BSA | The Software Alliance, Capitis Solutions, the 129

Consortium for Information & Software Quality (CISQ), HackerOne, Honeycomb Secure 130

Systems, iNovex, Ishpi Information Technologies, the Information Security and Privacy 131

Advisory Board (ISPAB), Juniper Networks, Medical Imaging & Technology Alliance (MITA), 132

Microsoft, Naval Sea Systems Command (NAVSEA), the National Institute of Standards and 133

Technology (NIST), Northrop Grumman, the Office of the Undersecretary of Defense for 134

Research and Engineering, Red Hat, the Software Assurance Forum for Excellence in Code 135

(SAFECode), and the Software Engineering Institute (SEI). 136

Audience 137

There are two primary audiences for this document. The first is software producers (e.g., 138

commercial-off-the-shelf [COTS] product vendors, government-off-the-shelf [GOTS] software 139

developers, custom software developers) regardless of size, sector, or level of maturity. The 140

second is software purchasers and consumers, both federal agencies and other organizations. 141

Readers of this document are not expected to be experts in secure software development in order 142

to understand it, but such expertise is required to implement its recommended practices. 143

Personnel within the following Workforce Categories and Specialty Areas from the National 144

Initiative for Cybersecurity Education (NICE) Cybersecurity Workforce Framework [SP800181] 145

are most likely to find this publication of interest: 146

• Securely Provision (SP): Risk Management (RSK), Software Development (DEV), 147

Systems Requirements Planning (SRP), Test and Evaluation (TST), Systems 148

Development (SYS) 149

• Operate and Maintain (OM): Systems Analysis (ANA) 150

• Oversee and Govern (OV): Training, Education, and Awareness (TEA); Cybersecurity 151

Management (MGT); Executive Cyber Leadership (EXL); Program/Project Management 152

(PMA) and Acquisition 153

• Protect and Defend (PR): Incident Response (CIR), Vulnerability Assessment and 154

Management (VAM) 155

• Analyze (AN): Threat Analysis (TWA), Exploitation Analysis (EXP) 156

https://www.federalregister.gov/d/2021-10460
https://www.federalregister.gov/d/2021-10460
https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity/workshop-and-call-position-papers
https://www.nist.gov/itl/executive-order-improving-nations-cybersecurity/enhancing-software-supply-chain-security

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

iv

Note to Reviewers 157

The authors welcome feedback on any part of this document but are particularly interested in the 158

following: 159

• Do the SSDF practices, tasks, and implementation examples fit well into your current 160

software development practices? Are there any conflicts or gaps that the SSDF should 161

address? 162

• Should the SSDF practices and tasks involving software integration, building, and 163

delivery be split so that integration is separate from building and delivery? 164

• What types of artifacts and evidence can be captured, documented, and shared publicly as 165

byproducts of implementing the secure software development practices? Are there 166

examples you can share? 167

If you are from a standards developing organization or another organization that has produced a 168

set of secure practices, and you would like to map your secure software development standard or 169

guidance to the SSDF, please contact the authors at ssdf@nist.gov. They would like to introduce 170

you to the National Online Informative References Program (OLIR) so that you can submit your 171

mapping there to augment the existing set of informative references. 172

mailto:ssdf@nist.gov
https://csrc.nist.gov/projects/olir

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

v

Call for Patent Claims 173

This public review includes a call for information on essential patent claims (claims whose use 174

would be required for compliance with the guidance or requirements in this Information 175

Technology Laboratory (ITL) draft publication). Such guidance and/or requirements may be 176

directly stated in this ITL Publication or by reference to another publication. This call also 177

includes disclosure, where known, of the existence of pending U.S. or foreign patent applications 178

relating to this ITL draft publication and of any relevant unexpired U.S. or foreign patents. 179

ITL may require from the patent holder, or a party authorized to make assurances on its behalf, 180

in written or electronic form, either: 181

a) assurance in the form of a general disclaimer to the effect that such party does not hold 182

and does not currently intend holding any essential patent claim(s); or 183

b) assurance that a license to such essential patent claim(s) will be made available to 184

applicants desiring to utilize the license for the purpose of complying with the guidance 185

or requirements in this ITL draft publication either: 186

i. under reasonable terms and conditions that are demonstrably free of any unfair 187

discrimination; or 188

ii. without compensation and under reasonable terms and conditions that are 189

demonstrably free of any unfair discrimination. 190

Such assurance shall indicate that the patent holder (or third party authorized to make assurances 191

on its behalf) will include in any documents transferring ownership of patents subject to the 192

assurance, provisions sufficient to ensure that the commitments in the assurance are binding on 193

the transferee, and that the transferee will similarly include appropriate provisions in the event of 194

future transfers with the goal of binding each successor-in-interest. 195

The assurance shall also indicate that it is intended to be binding on successors-in-interest 196

regardless of whether such provisions are included in the relevant transfer documents. 197

Such statements should be addressed to: ssdf@nist.gov 198

mailto:ssdf@nist.gov

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

vi

Executive Summary 199

This document describes a set of fundamental, sound practices for secure software development 200

called the Secure Software Development Framework (SSDF). Organizations should integrate the 201

SSDF throughout their existing software development practices, express their secure software 202

development requirements to third-party suppliers using SSDF conventions, and acquire 203

software that meets the practices described in the SSDF. Using the SSDF helps organizations to 204

meet the following secure software development recommendations: 205

• Organizations should ensure that their people, processes, and technology are prepared to 206

perform secure software development. 207

• Organizations should protect all components of their software from tampering and 208

unauthorized access. 209

• Organizations should produce well-secured software with minimal security 210

vulnerabilities in its releases. 211

• Organizations should identify residual vulnerabilities in their software releases and 212

respond appropriately to address those vulnerabilities and prevent similar ones from 213

occurring in the future. 214

The SSDF does not prescribe exactly how to implement each practice. The focus is on the 215

outcomes of the practices rather than on the tools, techniques, and mechanisms to do so. This 216

means that the SSDF can be used by organizations in any sector or community, regardless of size 217

or cybersecurity sophistication. It can be used for any type of software development, regardless 218

of technology, platform, programming language, or operating environment. 219

The SSDF defines only a high-level subset of what organizations may need to do, so 220

organizations should consult the references and other resources for additional information on 221

implementing the practices. Not all practices are applicable to all use cases; organizations should 222

adopt a risk-based approach to determine what practices are relevant, appropriate, and effective 223

to mitigate the threats to their software development practices. 224

Organizations can communicate how they are meeting the clauses from section 4 of the 225

President’s Executive Order (EO) on “Improving the Nation’s Cybersecurity (14028)” using the 226

SSDF practices and tasks described in Appendix A. 227

https://www.federalregister.gov/d/2021-10460

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

vii

Table of Contents 228

Executive Summary ... vi 229

1 Introduction .. 1 230

2 The Secure Software Development Framework .. 4 231

References ... 17 232

 The SSDF and Executive Order 14028 .. 20 233

 Acronyms .. 21 234

 Change Log ... 22 235

 236

List of Tables 237

Table 1: The Secure Software Development Framework (SSDF) Version 1.1 5 238

Table 2: SSDF Practices Corresponding to EO 14028 Clauses 20 239

 240

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

1

1 Introduction 241

A software development life cycle (SDLC)1 is a formal or informal methodology for designing, 242

creating, and maintaining software (including code built into hardware). There are many models 243

for SDLCs, including waterfall, spiral, agile, and – in particular – agile combined with software 244

development and IT operations (DevOps) practices. Few SDLC models explicitly address 245

software security in detail, so secure software development practices usually need to be added to 246

and integrated into each SDLC model. Regardless of which SDLC model is used, secure 247

software development practices should be integrated throughout it for three reasons: to reduce 248

the number of vulnerabilities in released software, to mitigate the potential impact of the 249

exploitation of undetected or unaddressed vulnerabilities, and to address the root causes of 250

vulnerabilities to prevent recurrences. 251

Most aspects of security can be addressed multiple times within an SDLC, but in general, the 252

earlier in the SDLC that security is addressed, the less effort and cost is ultimately required to 253

achieve the same level of security. This principle, also known as shifting left, is critically 254

important regardless of the SDLC model. Shifting left minimizes any technical debt that would 255

require remediating early security flaws late in development or after the software is in 256

production. 257

There are many existing documents on secure software development practices, including those 258

listed in the References section. This document does not introduce new practices or define new 259

terminology; instead, it describes a set of recommended high-level practices based on established 260

standards, guidance, and secure software development practice documents. These practices, 261

collectively called the Secure Software Development Framework (SSDF), are intended to help 262

the target audiences achieve secure software development objectives. Many of the practices 263

directly involve the software itself, while others indirectly involve it (e.g., securing the 264

development environment). 265

Future work may expand on these recommendations, potentially covering topics such as how the 266

SSDF may apply to and vary for particular software development methodologies and associated 267

practices like DevOps and how an organization can transition from using just their current 268

software development practices to also incorporating the practices specified by the SSDF. Future 269

work will likely take the form of use cases so that the insights will be more readily applicable to 270

various types of development environments. 271

This document identifies and recommends secure software development practices but does not 272

prescribe exactly how to implement them. The focus is on the outcomes of the practices to be 273

implemented rather than on the tools, techniques, and mechanisms used to do so. Advantages of 274

specifying the practices at a high level include the following: 275

1 Note that SDLC is also widely used for “system development life cycle.” All usage of “SDLC” in this document is

referencing software, not systems.

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

2

• Can be used by organizations in any sector or community, regardless of size or 276

cybersecurity sophistication 277

• Can be applied to software developed to support information technology (IT), industrial 278

control systems (ICS), cyber-physical systems (CPS), or the Internet of Things (IoT) 279

• Can be integrated into any existing software development workflow and automated 280

toolchain; should not negatively affect organizations that already have robust, secure 281

software development practices in place 282

• Makes the practices broadly applicable, not specific to particular technologies, platforms, 283

programming languages, SDLC models, development environments, operating 284

environments, tools, etc. 285

• Can help an organization document its secure software development practices today and 286

define its future target practices as part of its continuous improvement process 287

• Can assist an organization currently using a classic software development model in 288

transitioning its secure software development practices for use with a modern software 289

development model (e.g., agile, DevOps) 290

• Can assist organizations that are procuring and using software to understand secure 291

software development practices employed by their suppliers 292

This document also provides a common language to describe fundamental secure software 293

development practices. This is similar to the approach taken by the Framework for Improving 294

Critical Infrastructure Cybersecurity, also known as the NIST Cybersecurity Framework 295

[NISTCSF].2 Expertise in secure software development is not required to understand the 296

practices. The common language helps facilitate communications about secure software practices 297

among both internal and external organizational stakeholders, such as: 298

• Business owners, software developers, project managers and leads, cybersecurity 299

professionals, and operations and platform engineers within an organization who need to 300

clearly communicate with each other about secure software development 301

• Software purchasers and consumers, including both Federal Government agencies and 302

other organizations, that want to define required or desired characteristics for software in 303

their acquisition processes in order to have higher-quality software (particularly with 304

fewer security vulnerabilities)3 305

• Software producers (e.g., commercial-off-the-shelf [COTS] product vendors, 306

government-off-the-shelf [GOTS] software developers, software developers working 307

within or on behalf of software consumer organizations, software testers/quality 308

2 The SSDF practices may help support the NIST Cybersecurity Framework Functions, Categories, and Subcategories, but the

SSDF practices do not map to them and are typically the responsibility of different parties. Developers can adopt SSDF

practices, and the outcomes of their work could help organizations with their operational security in support of the

Cybersecurity Framework.
3 Future work may provide more practical guidance for software consumers on how they can leverage the SSDF in specific

use cases.

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

3

assurance personnel) who want to integrate secure software development practices 309

throughout their SDLCs, express their secure software practices to their customers, or 310

define requirements for their suppliers 311

This document’s practices are not based on the assumption that all organizations have the same 312

security objectives and priorities. Rather, the recommendations reflect that each software 313

producer may have unique security assumptions, and each software consumer may have unique 314

security needs and requirements. While the aim is for each software producer to follow all 315

applicable practices, the expectation is that the degree to which each practice is implemented and 316

the formality of the implementation will vary based on the producer’s security assumptions. The 317

practices provide flexibility for implementers, but they are also clear to avoid leaving too much 318

open to interpretation. 319

Although most of these practices are relevant to any software development effort, some are not. 320

For example, if developing a particular piece of software does not involve using a compiler, 321

there would be no need to follow a practice on configuring the compiler to improve executable 322

security. Some practices are foundational, while others are more advanced and depend on certain 323

foundational practices already being in place. Also, practices are not all equally important for all 324

cases. Risk should be considered when deciding which practices to use and how much time and 325

resources to devote to each practice.4 The practices, tasks, and implementation examples are not 326

prioritized. Finally, the frequency for performing recurring practices is not specified because the 327

frequency appropriate for any particular situation depends on risk and other factors defined by 328

the organization. 329

The responsibility for implementing the practices is distributed among different organizations 330

based on the delivery of the software and services (e.g., on premises, infrastructure as a service, 331

software as a service, platform as a service, container as a service, serverless). It follows a shared 332

responsibility model involving the platform/service providers and the tenant who is consuming 333

those platforms/services. 334

4 Organizations seeking guidance on how to get started with secure software development can consult many publicly available

references, such as “SDL That Won’t Break the Bank” by Steve Lipner from SAFECode (https://i.blackhat.com/us-18/Thu-

August-9/us-18-Lipner-SDL-For-The-Rest-Of-Us.pdf) and “Simplified Implementation of the Microsoft SDL” by Microsoft

(https://www.microsoft.com/en-us/download/details.aspx?id=12379).

https://i.blackhat.com/us-18/Thu-August-9/us-18-Lipner-SDL-For-The-Rest-Of-Us.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Lipner-SDL-For-The-Rest-Of-Us.pdf
https://www.microsoft.com/en-us/download/details.aspx?id=12379

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

4

2 The Secure Software Development Framework 335

This document defines version 1.1 of the Secure Software Development Framework (SSDF), 336

with fundamental, sound, and secure recommended practices based on established secure 337

software development practice documents. The practices are organized into four groups: 338

• Prepare the Organization (PO): Organizations should ensure that their people, 339

processes, and technology are prepared to perform secure software development at the 340

organization level. Many organizations will find some PO practices to also be applicable 341

to subsets of their secure software development, like individual development groups or 342

projects. 343

• Protect the Software (PS): Organizations should protect all components of the software 344

from tampering and unauthorized access. 345

• Produce Well-Secured Software (PW): Organizations should produce well-secured 346

software with minimal security vulnerabilities in its releases. 347

• Respond to Vulnerabilities (RV): Organizations should identify residual vulnerabilities 348

in software releases and respond appropriately to address those vulnerabilities and 349

prevent similar ones from occurring in the future. 350

Each practice definition includes the following elements: 351

• Practice: The name of the practice and a unique identifier, followed by a brief 352

explanation of what the practice is and why it is beneficial 353

• Tasks: One or more actions needed to accomplish a practice 354

• Implementation Examples: One or more examples of types of tools, processes, or other 355

methods that could be used to help implement a task; not intended to imply that any 356

example or combination of examples is required or that only the stated examples are 357

feasible options 358

• References: Pointers to one or more established secure development practice documents 359

and their mappings to a particular task; not all references will apply to all instances of 360

software development 361

Table 1 defines the practices. They are only a subset of what an organization may need to do 362

with the practices focused on helping organizations achieve secure software development 363

objectives. The information in the table is space constrained, and much more information on 364

each practice can be found in the references. 365

Note: The order of the practices and tasks in the table is not intended to imply the sequence of 366

implementation or the relative importance of any practice or task. 367

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

5

Table 1: The Secure Software Development Framework (SSDF) Version 1.1

Practices Tasks Implementation Examples References

Prepare the Organization (PO)

Define Security Requirements for Software
Development (PO.1): Ensure that security
requirements for software development are
known at all times so that they can be taken into
account throughout the SDLC and duplication of
effort can be minimized because the
requirements information can be collected once
and shared. This includes requirements from
internal sources (e.g., the organization’s policies,
business objectives, and risk management
strategy) and external sources (e.g., applicable
laws and regulations).

PO.1.1: Identify and document all security
requirements for the organization’s software
development infrastructures and processes, and
maintain the requirements over time.

• Define policies for securing software development infrastructures and their
components, including development endpoints, throughout the SDLC and
maintaining that security.

• Define policies for securing software development processes throughout the
SDLC and maintaining that security, including open-source and other third-
party software components utilized by software being developed.

• Review all security requirements at least annually or sooner if there are new
requirements from internal or external sources or if a major vulnerability
incident has occurred.

• Educate affected individuals on impending changes to requirements.

BSAFSS: SM.3, DE.1, IA.1, IA.2

BSIMM: CP1.1, CP1.3, SR1.1

IEC62443: SM-7, SM-9

NISTCSF: ID.GV-3

OWASPASVS: 1.1.1

OWASPMASVS: 1.10

OWASPSAMM: PC1-A, PC1-B, PC2-A

PCISSLC: 2.1, 2.2

SCFPSSD: Planning the Implementation and Deployment of Secure Development Practices

SP80053: SA-8, SA-15

SP800160: 3.1.2, 3.2.1, 3.2.2, 3.3.1, 3.4.2, 3.4.3

SP800181: T0414; K0003, K0039, K0044, K0157, K0168, K0177, K0211, K0260, K0261,
K0262, K0524; S0010, S0357, S0368; A0033, A0123, A0151

PO.1.2: Identify and document all security
requirements for organization-developed software to
meet, and maintain the requirements over time.

• Define policies that specify risk-based software architecture and design
requirements, such as making code modular to facilitate code reuse and
updates, isolating security components from other components during
execution, avoiding undocumented commands and settings, and providing
features that will aid software purchasers and consumers with the secure
deployment, operation, and maintenance of the software.

• Define policies that specify the security requirements for the organization’s
software, and verify compliance at key points in the SDLC (e.g., classes of
software flaws verified by gates).

• Analyze the risk of applicable technology stacks (e.g., languages,
environments, deployment models), and recommend or require the use of
stacks that will reduce risk compared to others.

• Define policies that specify what needs to be archived for each software
release (e.g., code, package files, third-party libraries, documentation) and
how long it needs to be retained based on the SDLC model and other factors.

• Ensure that policies cover the entire software life cycle, including notifying
users of the impending end of software support and the date of software end-
of-life.

• Review all security requirements at least annually, or sooner if there are new
requirements from internal or external sources or if a major vulnerability
incident has occurred.

BSAFSS: SC.1-1, SC.2, PD.1-1, PD.1-2, PD.1-3, PD.2-2, SI, PA, CS, AA, LO, EE

BSIMM: SM1.4, CP1.1, CP1.2, CP1.3

IEC62443: SR-3, SR-4, SR-5, SD-4

ISO27034: 7.3.2

MSSDL: 2, 5

NISTCSF: ID.GV-3

OWASPMASVS: 1.12

OWASPSAMM: PC1-A, PC1-B, PC2-A, PC3-A, SR1-A, SR1-B, SR2-B, SA1-B, IR1-A

PCISSLC: 2.1, 2.2, 2.3, 3.3

SCFPSSD: Establish Coding Standards and Conventions

SP80053: SA-2, SA-8

SP800160: 3.1.2, 3.2.1, 3.3.1

SP800181: T0414; K0003, K0039, K0044, K0157, K0168, K0177, K0211, K0260, K0261,
K0262, K0524; S0010, S0357, S0368; A0033, A0123, A0151

PO.1.3: Communicate requirements to all third parties
who will provide commercial software components to
the organization for reuse by the organization’s own
software. [Formerly PW.3.1]

• Define a core set of security requirements for software components, and
include it in acquisition documents, software contracts, and other agreements
with third parties.

• Define security-related criteria for selecting software; the criteria can include
things such as the third party’s vulnerability disclosure program and product
security incident response capabilities.

• Require third parties to provide evidence that their software complies with the
organization’s security requirements.

• Require third parties to provide provenance data for their software and its
dependencies.

• Establish and follow procedures to address risk when there are security
requirements that third-party software components to be acquired do not
meet.

BSAFSS: SM.1, SM.2, SM.2-1, SM.2-4

BSIMM: CP2.4, SR2.5, SR3.2

IDASOAR: 19, 21

IEC62443: SM-9, SM-10

MSSDL: 7

NISTCSF: ID.SC-3

OWASPSAMM: SR3-A

SCAGILE: Tasks Requiring the Help of Security Experts 8

SCFPSSD: Manage Security Risk Inherent in the Use of Third-Party Components

SCSIC: Vendor Sourcing Integrity Controls

SP80053: SA-4, SA-9, SA-12, SR-5

SP800160: 3.1.1, 3.1.2

SP800181: T0203, T0415; K0039; S0374; A0056, A0161

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

6

Practices Tasks Implementation Examples References

Implement Roles and Responsibilities (PO.2):
Ensure that everyone inside and outside of the
organization involved in the SDLC is prepared to
perform their SSDF-related roles and
responsibilities throughout the SDLC.

PO.2.1: Create new roles and alter responsibilities for
existing roles as needed to encompass all parts of the
SSDF. Periodically review and maintain the defined
roles and responsibilities, updating them as needed.

• Define SSDF-related roles and responsibilities for all members of the software
development team.

• Integrate the security roles into the software development team.

• Define roles and responsibilities for cybersecurity staff, security champions,
project managers and leads, senior management, software developers,
software testers, software assurance leads and staff, product owners,
operations and platform engineers, and others involved in the SDLC.

• Conduct an annual review of all roles and responsibilities.

• Educate affected individuals on impending changes to roles and
responsibilities.

BSAFSS: PD.2-1, PD.2-2

BSIMM: SM1.1, CP3.2

IEC62443: SM-2, SM-13

NISTCSF: ID.AM-6, ID.GV-2

PCISSLC: 1.2

SCSIC: Vendor Software Development Integrity Controls

SP80053: SA-3

SP800160: 3.2.1, 3.2.4, 3.3.1

SP800181: K0233

PO.2.2: Provide role-based training for all personnel
with responsibilities that contribute to secure
development. Periodically review personnel proficiency
and role-based training, and update the training as
needed.

• Document the desired outcomes of training for each role.

• Define the type of training or curriculum required to achieve the desired
outcome for each role.

• Create a training plan for each role.

• Acquire or create training for each role; acquired training may need to be
customized for the organization.

• Measure personnel performance to identify areas where changes to training
may be beneficial.

BSAFSS: PD.2-2

BSIMM: SM1.3, CP2.5, T1.1, T1.5, T1.7, T1.8, T2.8, T3.2, T3.4

IEC62443: SM-4

MSSDL: 1

NISTCSF: PR.AT

OWASPSAMM: EG1-A, EG2-A

PCISSLC: 1.3

SCAGILE: Operational Security Tasks 14, 15; Tasks Requiring the Help of Security Experts
1

SCFPSSD: Planning the Implementation and Deployment of Secure Development Practices

SCSIC: Vendor Software Development Integrity Controls

SP80053: SA-8

SP800160: 3.2.4, 3.2.6

SP800181: OV-TEA-001, OV-TEA-002; T0030, T0073, T0320; K0204, K0208, K0220,
K0226, K0243, K0245, K0252; S0100, S0101; A0004, A0057

PO.2.3: Obtain upper management commitment to
secure development, and convey that commitment to
all with SSDF-related roles and responsibilities.

• Appoint a single leader or leadership team to be responsible for the entire
secure software development process, including authorizing the release of
software to production.

• Increase upper management awareness of the risks of developing software
without integrating security throughout the development life cycle and the risk
mitigation provided by the SSDF practices.

• Assist upper management in incorporating secure development support into
their communications with personnel with SSDF-related roles and
responsibilities.

• Educate all personnel with SSDF-related roles and responsibilities on upper
management’s commitment to the SSDF and the importance of the SSDF to
the organization.

BSIMM: SM1.2, SM1.3, CP2.5

NISTCSF: ID.RM-1, ID.SC-1

OWASPSAMM: SM1.A

PCISSLC: 1.1

SP800181: T0001, T0004

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

7

Practices Tasks Implementation Examples References

Implement Supporting Toolchains (PO.3):
Use automation to reduce human effort and
improve the accuracy, consistency, usability,
and comprehensiveness of security practices
throughout the SDLC, as well as provide a way
to document and demonstrate the use of these
practices. Toolchains and tools may be used at
different levels of the organization, such as
organization-wide or project-specific, and may
address a particular part of the SDLC, like a
build pipeline.

PO.3.1: Specify which tools or tool types must or
should be included in each toolchain to mitigate
identified risks, as well as how the toolchain
components are to be integrated with each other.

• Define categories of toolchains, and specify the mandatory tools or tool types
to be used for each category.

• Identify security tools to integrate into the developer toolchain.

• Evaluate tools’ signing capabilities to create immutable records/logs for
auditability within the toolchain.

• Use automated technology for toolchain management and orchestration.

CNCFSSCP: Securing Materials—Verification; Securing Build Pipelines—Verification,
Automation, Secure Authentication/Access; Securing Artefacts—Verification; Securing
Deployments—Verification

MSSDL: 8

OWASPSAMM: IR2-B, ST2-B

SCAGILE: Tasks Requiring the Help of Security Experts 9

SCSIC: Vendor Software Delivery Integrity Controls

SP80053: SA-15

SP800181: K0013, K0178

PO.3.2: Follow recommended security practices to
deploy and maintain tools and toolchains.

• Evaluate, select, and acquire tools, and assess the security of each tool.

• Integrate tools with other tools and existing software development processes
and workflows.

• Use code-based configuration for toolchains (e.g., pipelines as code,
toolchains as code).

• Implement the technologies and processes needed for reproducible builds.

• Update, upgrade, or replace tools as needed to address tool vulnerabilities or
add new tool capabilities.

• Continuously monitor tools and tool logs for potential operational and security
issues, including policy violations and anomalous behavior.

• Regularly verify the integrity and check the provenance of each tool to identify
potential problems.

• Be prepared to share evidence and artifact data when requested with auditors
and purchasers who want to confirm the use of tools and toolchains to support
the development practices.

• See PW.6 for examples of build and compilation tools.

BSAFSS: DE.2

CNCFSSCP: Securing Build Pipelines—Verification, Automation, Controlled Environments,
Secure Authentication/Access; Securing Artefacts—Verification, Automation, Controlled
Environments, Encryption; Securing Deployments—Verification, Automation

IEC62443: SM-7

NISTDVS: 2.2

OWASPASVS: 1.14.3, 1.14.4, 14.1, 14.2

OWASPMASVS: 7.9

OWASPSCVS: 3, 5

SCAGILE: Tasks Requiring the Help of Security Experts 9

SCFPSSD: Use Current Compiler and Toolchain Versions and Secure Compiler Options

SCSIC: Vendor Software Delivery Integrity Controls

SP80053: SA-15

SP800181: K0013, K0178

PO.3.3: Configure tools to generate evidence and
artifacts of their support of secure software
development practices as defined by the organization.

• Use existing tooling (e.g., workflow tracking, issue tracking, value stream
mapping) to create an audit trail of the secure development-related actions
that are performed for continuous improvement purposes.

• Determine how often the collected information should be audited, and
implement the necessary processes.

• Establish and enforce security and retention policies for evidence and artifact
data.

• Be prepared to share evidence and artifact data when requested with auditors
and purchasers who want to confirm the use of secure software development
practices.

BSAFSS: PD.1-5

CNCFSSCP: Securing Build Pipelines—Verification, Automation, Controlled Environments;
Securing Artefacts—Verification

IEC62443: SM-12, SI-2

MSSDL: 8

OWASPSAMM: PC3-B

OWASPSCVS: 3.13, 3.14

PCISSLC: 2.5

SCAGILE: Tasks Requiring the Help of Security Experts 9

SCSIC: Vendor Software Delivery Integrity Controls

SP80053: SA-15

SP800181: K0013; T0024

Define and Use Criteria for Software Security
Checks (PO.4): Help ensure that the software
resulting from the SDLC meets the
organization’s expectations by defining and
using criteria for checking the software’s security
during development.

PO.4.1: Define criteria for software security checks
and track throughout the SDLC.

• Ensure that the criteria adequately indicate how effectively security risk is
being managed.

• Define key performance indicators (KPIs) and key risk indicators (KRIs) for
software security.

• Add software security criteria to existing checks (e.g., the Definition of Done in
agile SDLC methodologies).

• Review the artifacts generated as part of the software development workflow
system to determine if they meet the criteria purposes.

• Record security check approvals, rejections, and exception requests as part of
the workflow and tracking system.

• Summarize the results of the software security checks, including a description
of the security risks that were successfully mitigated.

BSAFSS: TV.2-1, TV.5-1

BSIMM: SM1.4, SM2.2, SM2.6

IEC62443: SI-1, SI-2, SVV-3

ISO27034: 7.3.5

MSSDL: 3

OWASPSAMM: PC3-A, DR3-B, IR3-B, ST3-B

PCISSLC: 3.3

SP80053: SA-15

SP800160: 3.2.1, 3.2.5, 3.3.1

SP800181: K0153, K0165

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

8

Practices Tasks Implementation Examples References

PO.4.2: Implement processes, mechanisms, etc. to
gather and safeguard the necessary information in
support of the criteria.

• Use the toolchain to automatically gather information that informs security
decision-making.

• Deploy additional tools if needed to support the generation and collection of
information supporting the criteria.

• Automate decision-making processes utilizing the criteria.

• Only allow authorized personnel to access the gathered information, and
prevent any alteration or deletion of the information.

• Be prepared to share evidence and artifact data when requested with auditors
and purchasers who want to confirm the use of secure software development
practices.

BSAFSS: PD.1-4, PD.1-5

BSIMM: SM1.4, SM2.2

IEC62443: SI-1, SVV-1, SVV-2, SVV-3, SVV-4

OWASPSAMM: PC3-B

PCISSLC: 2.5

SCSIC: Vendor Software Delivery Integrity Controls

SP80053: SA-15

SP800160: 3.2.5, 3.3.7

SP800181: T0349; K0153

Implement and Maintain Secure
Environments for Software Development
(PO.5): Ensure that all components of the
environments for software development are
strongly protected from internal and external
threats to prevent compromises of the
environments or the software being developed
or maintained within them. Examples of
environments for software development include
development, build, test, and distribution
environments.

PO.5.1: Separate and protect each environment
involved in software development.

• Use separate identification and authentication realms with risk-based
authentication and conditional access for each environment.

• Use network segmentation and access controls to separate the environments
from each other and from production environments, and to separate
components from each other within each non-production environment, in order
to reduce attack surfaces and attackers’ lateral movement and
privilege/access escalation.

• Enforce authentication and tightly restrict connections entering and exiting
each software development environment, including minimizing access to the
internet to only what is necessary.

• Minimize the use of and dependencies on production enterprise software in
non-production environments.

• Regularly log, monitor, and audit the trust relationships between the
environments and between the components within each environment.

• Continuously log and monitor operations and alerts across all components of
the development environment to detect, respond, and recover from attempted
and actual cyber incidents.

• Configure security controls and other tools involved in separating and
protecting the environments to generate evidence and artifacts for their
activities.

• Collect, protect, and regularly check provenance data for all software
deployed in each environment, and determine if any of the software or their
dependencies have new known vulnerabilities.

BSAFSS: DE.1, IA.1, IA.2

CNCFSSCP: Securing Build Pipelines—Controlled Environments

IEC62443: SM-7

NISTCSF: PR.AC-5, PR.DS-7

SCAGILE: Tasks Requiring the Help of Security Experts 11

SCSIC: Vendor Software Delivery Integrity Controls

SP800181: OM-NET-001, SP-SYS-001; T0019, T0023, T0144, T0160, T0262, T0438,
T0484, T0485, T0553; K0001, K0005, K0007, K0033, K0049, K0056, K0061, K0071,
K0104, K0112, K0179, K0326, K0487; S0007, S0084, S0121; A0048

PO.5.2: Secure and harden development endpoints
(i.e., endpoints for software designers, developers,
testers, builders, etc.) to perform development-related
tasks using a risk-based approach.

• Configure each development endpoint based on approved hardening guides,
checklists, etc.; for example, enable FIPS-compliant encryption of all sensitive
data at rest and in transit.

• Configure each development endpoint and the development resources to
provide the least functionality needed by its users and services and to enforce
the principle of least privilege.

• Continuously monitor the security posture of all development endpoints.

• Configure security controls and other tools involved in securing and hardening
development endpoints to generate evidence and artifacts for their activities.

• Require multi-factor authentication for all access to development endpoints
and development resources.

• Provide dedicated development endpoints on non-production networks for
performing all development-related tasks; provide separate endpoints on
production networks for typical enterprise tasks.

BSAFSS: DE.1-1, IA.1, IA.2

IEC62443: SM-7

NISTCSF: PR.AC-4, PR.AC-7, PR.IP-1, PR.IP-3, PR.IP-12, PR.PT-1, PR.PT-3, DE.CM

SCAGILE: Tasks Requiring the Help of Security Experts 11

SCSIC: Vendor Software Delivery Integrity Controls

SP800181: OM-ADM-001, SP-SYS-001; T0484, T0485, T0489, T0553; K0005, K0007,
K0077, K0088, K0130, K0167, K0205, K0275; S0076, S0097, S0121, S0158; A0155

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

9

Practices Tasks Implementation Examples References

Protect Software (PS)

Protect All Forms of Code from Unauthorized
Access and Tampering (PS.1): Help prevent
unauthorized changes to code, both inadvertent
and intentional, which could circumvent or
negate the intended security characteristics of
the software. For code that is not intended to be
publicly accessible, this helps prevent theft of
the software and may make it more difficult or
time-consuming for attackers to find
vulnerabilities in the software.

PS.1.1: Store all forms of code, including source code
and executable code, based on the principle of least
privilege so that only authorized personnel, tools,
services, etc. have the necessary forms of access.

• Store all source code in a code repository, and restrict access to it based on
the nature of the code. For example, some code may be intended for public
access, in which case its integrity and availability should be protected; other
code may also need its confidentiality protected.

• Use version control features of the repository to track all changes made to the
code with accountability to the individual developer account.

• Review and approve all changes made to the code after the code has been
automatically scanned for vulnerabilities and any issues have been
remediated.

• Use code signing to help protect the integrity of executables.

• Use cryptography (e.g., cryptographic hashes) to help protect file integrity.

BSAFSS: IA.1, IA.2, SM.4-1, DE.1-2

BSIMM: SE2.4

CNCFSSCP: Securing the Source Code—Verification, Automation, Controlled
Environments, Secure Authentication; Securing Materials—Automation

IDASOAR: Fact Sheet 25

IEC62443: SM-6, SM-7, SM-8

NISTCSF: PR.AC-4, PR.DS-6, PR.IP-3

OWASPASVS: 1.10, 10.3.2

OWASPMASVS: 7.1

OWASPSAMM: OE3-B

PCISSLC: 5.1, 6.1

SCSIC: Vendor Software Delivery Integrity Controls, Vendor Software Development Integrity
Controls

SP80053: SA-10

Provide a Mechanism for Verifying Software
Release Integrity (PS.2): Help software
purchasers and consumers ensure that the
software they acquire is legitimate and has not
been tampered with.

PS.2.1: Make integrity verification information
available to software purchasers and consumers.

• Post cryptographic hashes for release files on a well-secured website.

• Use an established certificate authority for code signing so that consumers’
operating systems or other tools and services can confirm the validity of
signatures before use.

• Periodically review the code signing processes, including certificate renewal,
rotation, revocation, and protection.

BSAFSS: SM.4, SM.5, SM.6

BSIMM: SE2.4

CNCFSSCP: Securing Deployments—Verification

IEC62443: SM-6, SM-8, SUM-4

NISTCSF: PR.DS-6

OWASPSAMM: OE3-B

OWASPSCVS: 4

PCISSLC: 6.1, 6.2

SCSIC: Vendor Software Delivery Integrity Controls

SP80053: SR-9

SP800181: K0178

Archive and Protect Each Software Release
(PS.3): Preserve software releases in order to
help identify, analyze, and eliminate
vulnerabilities discovered in the software after
release.

PS.3.1: Securely archive the necessary files and other
data (e.g., integrity verification information,
provenance data) to be retained for each software
release.

• Store the release files, associated images, etc. in repositories following the
organization’s established policy; allow read-only access to them for auditing
purposes by necessary personnel and no access by anyone else.

• Store and protect release integrity verification information and provenance
data, such as by keeping it in a separate location from the release files or by
signing the data.

BSAFSS: PD.1-5, DE.1-2, IA.2

CNCFSSCP: Securing Artefacts—Automation, Controlled Environments, Encryption;
Securing Deployments—Verification

IDASOAR: 25

IEC62443: SM-6, SM-7

NISTCSF: PR.IP-4

OWASPSCVS: 1, 3.18, 3.19, 6.3

PCISSLC: 5.2, 6.1, 6.2

SCSIC: Vendor Software Delivery Integrity Controls

SP80053: SA-10, SA-15, SR-9

PS.3.2: Collect, maintain, and share provenance data
for all components and other dependencies of each
software release (e.g., in a software bill of materials
[SBOM]).

• Make the provenance data available to software purchasers in accordance
with your organization’s policies, preferably using standards-based formats.

• Update the provenance data every time any of the software’s components or
other dependencies are updated.

BSAFSS: SM.2

BSIMM: SE3.6

CNCFSSCP: Securing Materials—Verification, Automation

NTIASBOM: All

OWASPSCVS: 1.4, 2

SCSIC: Vendor Software Delivery Integrity Controls

SCTPC: MAINTAIN3

SP80053: SR-4

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

10

Practices Tasks Implementation Examples References

Produce Well-Secured Software (PW)

Design Software to Meet Security
Requirements and Mitigate Security Risks
(PW.1): Identify and evaluate the security
requirements for the software; determine what
security risks the software is likely to face during
operation and how the software’s design should
mitigate those risks; and justify any cases where
risk-based analysis indicates that security
requirements should be relaxed or waived.
Addressing security requirements and risks
during software design (secure by design) helps
make software development more efficient.

PW.1.1: Use forms of risk modeling, such as threat
modeling, attack modeling, or attack surface mapping,
to help assess the security risk for the software.

• Train the development team (security champions in particular) or collaborate
with a risk modeling expert to create models and analyze how to use a risk-
based approach to address the risks and implement mitigations.

• Perform more rigorous assessments for high-risk areas, such as protecting
sensitive data and safeguarding identification, authentication, and access
control, including credential management.

• Review vulnerability reports and statistics for previous software to inform the
security risk assessment.

• Use data classification methods to identify and characterize each type of data
that the software will interact with.

BSAFSS: SC.1

BSIMM: AM1.2, AM1.3, AM1.5, AM2.1, AM2.2, AM2.5, AM2.6, AM2.7

IDASOAR: 1

IEC62443: SM-4, SR-1, SR-2, SD-1

ISO27034: 7.3.3

MSSDL: 4

NISTCSF: ID.RA

NISTDVS: 2.1

OWASPASVS: 1.1.2, 1.2, 1.4, 1.6, 1.8, 1.9, 1.11, 2, 3, 4, 6, 8, 9, 11, 12, 13

OWASPMASVS: 1.6, 1.8, 2, 3, 4, 5, 6

OWASPSAMM: TA1-A, TA1-B, TA3-B, DR1-A

PCISSLC: 3.2, 3.3

SCAGILE: Tasks Requiring the Help of Security Experts 3

SCFPSSD: Threat Modeling

SCTTM: Entire guide

SP80053: SA-8, SA-15, SA-17

SP800160: 3.3.4, 3.4.5

SP800181: T0038, T0062; K0005, K0009, K0038, K0039, K0070, K0080, K0119, K0147,
K0149, K0151, K0152, K0160, K0161, K0162, K0165, K0297, K0310, K0344, K0362,
K0487, K0624; S0006, S0009, S0022, S0078, S0171, S0229, S0248; A0092, A0093,
A0107

PW.1.2: Document the software’s security
requirements, risks, and design decisions.

• Document the response to each risk, including how mitigations are to be
achieved, and what the rationales are for any approved exceptions to the
security requirements.

• Summarize the documentation to serve as evidence and artifacts for the
design activities.

BSAFSS: SC.1-1, PD.1-1

BSIMM: AA2.2

IEC62443: SD-1

ISO27034: 7.3.3

MSSDL: 4

OWASPASVS: 1.1.3, 1.1.4

OWASPMASVS: 1.3, 1.6

OWASPSAMM: DR1-B

PCISSLC: 3.2, 3.3

SP80053: SA-10

SP800181: T0256; K0005, K0038, K0039, K0147, K0149, K0160, K0161, K0162, K0165,
K0344, K0362, K0487; S0006, S0009, S0078, S0171, S0229, S0248; A0092, A0107

PW.1.3: Where appropriate, build in support for using
standardized security features and services (e.g.,
integrating with existing log management, identity
management, access control, and vulnerability
management systems) instead of creating proprietary
implementations of security features and services.
[Formerly PW.4.3]

• Maintain an organization-wide software repository of modules for supporting
standardized security features and services.

• Designate which security features and services must be supported by
software to be developed.

BSAFSS: SI.2-1, SI.2-2, LO.1

BSIMM: SFD1.1, SR1.1

IEC62443: SD-1, SD-4

MSSDL: 5

OWASPASVS: 1.1.6

OWASPSAMM: SA2-A

SCFPSSD: Standardize Identity and Access Management; Establish Log Requirements and
Audit Practices

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

11

Practices Tasks Implementation Examples References

Review the Software Design to Verify
Compliance with Security Requirements and
Risk Information (PW.2): Help ensure that the
software will meet the security requirements and
satisfactorily address the identified risk
information.

PW.2.1: Have either 1) a qualified person (or people)
who were not involved with the design or 2) adequate
automated processes instantiated in the toolchain (or
both) review the software design to confirm and
enforce that it meets all of the security requirements
and satisfactorily addresses the identified risk
information.

• Review the software design to confirm that it addresses all of the security
requirements.

• Review the risk models created during software design to determine if they
appear to adequately identify the risks.

• Review the software design to confirm that it satisfactorily addresses the risks
identified by the risk models.

• Have the software’s designer correct failures to meet the requirements.

• Change the design and/or the risk response strategy if the security
requirements cannot be met.

• Document the findings of the design review to serve as evidence and artifacts.

BSAFSS: TV.3

BSIMM: AA1.1, AA1.2, AA2.1

IEC62443: SM-2, SR-2, SR-5, SD-3, SD-4, SI-2

ISO27034: 7.3.3

OWASPASVS: 1.1.5

OWASPSAMM: DR1-A, DR1-B

PCISSLC: 3.2

SP800181: T0328; K0038, K0039, K0070, K0080, K0119, K0152, K0153, K0161, K0165,
K0172, K0297; S0006, S0009, S0022, S0036, S0141, S0171

Verify Third-Party Software Complies with
Security Requirements (PW.3): Moved to
PW.4

PW.3.1: Moved to PO.1.3

PW.3.2: Moved to PW.4.5

Reuse Existing, Well-Secured Software When
Feasible Instead of Duplicating Functionality
(PW.4): Lower the costs of software
development, expedite software development,
and decrease the likelihood of introducing
additional security vulnerabilities into the
software by reusing software modules and
services that have already had their security
posture checked. This is particularly important
for software that implements security
functionality, such as cryptographic modules and
protocols.

PW.4.1: Acquire well-secured software components
(e.g., software libraries, modules, middleware,
frameworks) from commercial, open-source, and other
third-party developers for use by the organization’s
software.

• Review and evaluate third-party software components in the context of their
expected use. If a component is to be used in a substantially different way in
the future, perform the review and evaluation again with that new context in
mind.

• Obtain provenance information (e.g., SBOM, source composition analysis) for
each software component, and analyze that information to better assess the
risk that the component may introduce.

• Establish an organization-wide software repository to host sanctioned and
vetted open-source components.

• Maintain a list of organization-approved commercial software components and
component versions along with their provenance data.

• Designate which components must be included in software to be developed.

BSAFSS: SM.2

BSIMM: SR1.1

CNCFSSCP: Securing Materials—Verification

IDASOAR: 19

IEC62443: SM-9, SM-10

MSSDL: 6

NISTCSF: ID.SC-2

OWASPASVS: 1.1.6

OWASPSAMM: SA1-A

OWASPSCVS: 4

SCSIC: Vendor Sourcing Integrity Controls

SCTPC: MAINTAIN

SP80053: SA-4, SA-12

SP800181: K0039

PW.4.2: Create and maintain well-secured software
components in-house following SDLC processes to
meet common internal software development needs
that cannot be better met by third-party software
components.

• Follow organization-established security practices for secure software
development when creating and maintaining the components.

• Maintain an organization-wide software repository for these components.

• Designate which components must be included in software to be developed.

BSIMM: SFD1.1, SFD2.1, SR1.1

IDASOAR: 19

OWASPASVS: 1.1.6

SCTPC: MAINTAIN

SP800181: SP-DEV-001

PW.4.3: Moved to PW.1.3

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

12

Practices Tasks Implementation Examples References

PW.4.4: Verify that acquired commercial, open-source,
and all other third-party software components comply
with the requirements, as defined by the organization,
throughout their life cycles.

• Determine whether there are publicly known vulnerabilities in the software
modules and services that vendors have not yet fixed.

• Use existing results from commercial services for vetting the software
modules and services.

• [See PW.7 and PW.8]

BSAFSS: SC.3-1, TV.2, TV.3

CNCFSSCP: Securing Materials—Verification, Automation

IDASOAR: 21

IEC62443: SI-1, DM-1

MSSDL: 7

NISTCSF: ID.SC-4

NISTDVS: 2.11

OWASPASVS: 10, 14.2

OWASPMASVS: 7.5

OWASPSAMM: TA3-A, SR3-B

OWASPSCVS: 4, 5

PCISSLC: 3.2, 3.4, 4.1

SCAGILE: Tasks Requiring the Help of Security Experts 8

SCFPSSD: Manage Security Risk Inherent in the Use of Third-Party Components

SCSIC: Vendor Sourcing Integrity Controls, Peer Reviews and Security Testing

SCTPC: MAINTAIN, ASSESS

SP80053: SA-9, SA-12, SR-3

SP800160: 3.1.2, 3.3.8

SP800181: SP-DEV-002; K0153, K0266

PW.4.5: Verify the integrity and check the provenance
of all in-house and third-party software components
before reusing them for the organization’s own
software.

• Ensure each software component is still actively maintained and has not
reached end of life; this should include new vulnerabilities found in the
software being remediated.

• Determine a plan of action for each software component that is no longer
being maintained or will not be available in the near future.

• Confirm the integrity of software components through digital signatures or
other mechanisms.

BSAFSS: SM.2-1, SM.2-2, SM.2-3

CNCFSSCP: Securing Materials—Verification, Automation

IEC62443: SM-9, SM-10

NISTCSF: PR.DS-6

NISTDVS: 2.11

OWASPASVS: 14.2.4, 14.2.5

OWASPSCVS: 4, 6

SCSIC: Vendor Sourcing Integrity Controls

SP80053: SR-4

SP800181: S0298

Create Source Code by Adhering to Secure
Coding Practices (PW.5): Decrease the
number of security vulnerabilities in the software,
and reduce costs by eliminating vulnerabilities
during source code creation by following
organization-defined vulnerability severity
criteria.

PW.5.1: Follow all secure coding practices that are
appropriate to the development languages and
environment to meet the organization’s requirements.

• Validate all inputs, and validate and properly encode all output.

• Avoid using unsafe functions and calls.

• Handle errors gracefully.

• Provide logging and tracing capabilities.

• Use development environments with automated features that encourage or
require the use of secure coding practices with just-in-time training-in-place.

• Follow procedures for manually ensuring compliance with secure coding
practices.

• Check for other vulnerabilities that are common to the development languages
and environment.

• Have the developer review their own human-readable code to complement
(not replace) code review performed by other people or tools. [See PW.7]

BSAFSS: SC.2, SC.3, LO.1, EE.1

BSIMM: SR3.3, CR3.5

IDASOAR: 2

IEC62443: SI-1, SI-2

ISO27034: 7.3.5

MSSDL: 9

OWASPASVS: 1.1.7, 1.5, 1.7, 5, 7

OWASPMASVS: 7.6

SCFPSSD: Establish Log Requirements and Audit Practices, Use Code Analysis Tools to
Find Security Issues Early, Handle Data Safely, Handle Errors, Use Safe Functions Only

SP800181: SP-DEV-001; T0013, T0077, T0176; K0009, K0016, K0039, K0070, K0140,
K0624; S0019, S0060, S0149, S0172, S0266; A0036, A0047

PW.5.2: Moved to PW.5.1 as example

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

13

Practices Tasks Implementation Examples References

Configure the Integrated Development
Environment, Compilation, Interpreter, and
Build Processes to Improve Executable
Security (PW.6): Decrease the number of
security vulnerabilities in the software and
reduce costs by eliminating vulnerabilities before
testing occurs.

PW.6.1: Use compiler, interpreter, and build tools that
offer features to improve executable security.

• Use up-to-date versions of compiler, interpreter, and build tools.

• Follow change management processes when deploying or updating compiler,
interpreter, and build tools, and audit all unexpected changes to tools.

• Regularly validate the authenticity and integrity of compiler, interpreter, and
build tools.

BSAFSS: DE.2-1

CNCFSSCP: Securing Build Pipelines—Verification, Automation

IEC62443: SI-2

MSSDL: 8

SCAGILE: Operational Security Task 3

SCFPSSD: Use Current Compiler and Toolchain Versions and Secure Compiler Options

SCSIC: Vendor Software Development Integrity Controls

SP80053: SA-15

PW.6.2: Determine which compiler, interpreter, and
build tool features should be used and how each
should be configured, then implement and use the
approved configurations.

• Enable compiler features that produce warnings for poorly secured code
during the compilation process.

• Implement the “clean build” concept, where all compiler warnings are treated
as errors and eliminated.

• Enable compiler features that randomize characteristics, such as memory
location usage, that would otherwise be easily predictable and thus
exploitable.

• Conduct testing to ensure that the features are working as expected and not
inadvertently causing any operational issues or other problems.

• Continuously verify that the approved configurations are being used.

• Document information about the compiler, interpreter, and build tool
configuration in a knowledge base that developers can access, search, and
reproduce in their local development environment.

BSAFSS: DE.2-3, DE.2-4, DE.2-5

CNCFSSCP: Securing Build Pipelines—Verification, Automation

IEC62443: SI-2

MSSDL: 8

NISTDVS: 2.5

OWASPASVS: 14.1, 14.2.1

OWASPMASVS: 7.2

PCISSLC: 3.2

SCAGILE: Operational Security Task 8

SCFPSSD: Use Current Compiler and Toolchain Versions and Secure Compiler Options

SCSIC: Vendor Software Development Integrity Controls

SP80053: SA-15

SP800181: K0039, K0070

Review and/or Analyze Human-Readable
Code to Identify Vulnerabilities and Verify
Compliance with Security Requirements
(PW.7): Help identify vulnerabilities so that they
can be corrected before the software is released
to prevent exploitation. Using automated
methods lowers the effort and resources needed
to detect vulnerabilities. Human-readable code
includes source code, scripts, and any other
form of code that an organization deems human-
readable.

PW.7.1: Determine whether code review (a person
looks directly at the code to find issues) and/or code
analysis (tools are used to find issues in code, either in
a fully automated way or in conjunction with a person)
should be used, as defined by the organization.

• Follow the organization’s policies or guidelines for when code review should
be performed and how it should be conducted. This may include third-party
code and reusable code modules written in-house.

• Follow the organization’s policies or guidelines for when code analysis should
be performed and how it should be conducted.

IEC62443: SM-5, SI-1, SVV-1

SCSIC: Peer Reviews and Security Testing

SP80053: SA-11

SP800181: SP-DEV-002; K0013, K0039, K0070, K0153, K0165; S0174

PW.7.2: Perform the code review and/or code analysis
based on the organization’s secure coding standards,
and document and triage all discovered issues and
recommended remediations in the development
team’s workflow or issue tracking system.

• Perform peer review of code, and review any existing code review, analysis,
or testing results as part of the peer review.

• Use peer reviews to check code for backdoors and other malicious content.

• Use peer reviewing tools that facilitate the peer review process, and document
all discussions and other feedback.

• Use a static analysis tool to automatically check code for vulnerabilities and
compliance with the organization’s secure coding standards with a human
reviewing the issues reported by the tool and remediating them as necessary.

• Use review checklists to verify that the code complies with the requirements.

• Use automated tools to identify and remediate documented and verified
unsafe software practices on a continuous basis as human-readable code is
checked into the code repository.

• Identify and document the root cause of each discovered issue.

• Document lessons learned from code review and analysis in a knowledge
base that developers can access and search.

BSAFSS: TV.2, PD.1-4

BSIMM: CR1.2, CR1.4, CR1.6, CR2.6, CR2.7, CR3.5

IDASOAR: 3, 4, 5, 14, 15, 48

IEC62443: SI-1, SVV-1, SVV-2

ISO27034: 7.3.6

MSSDL: 9, 10

NISTDVS: 2.3, 2.4

OWASPASVS: 1.1.7, 10

OWASPMASVS: 7.5

OWASPSAMM: IR1-B, IR2-A, IR2-B, IR3-A

PCISSLC: 3.2, 4.1

SCAGILE: Operational Security Tasks 4, 7; Tasks Requiring the Help of Security Experts 10

SCFPSSD: Use Code Analysis Tools to Find Security Issues Early, Use Static Analysis
Security Testing Tools, Perform Manual Verification of Security Features/Mitigations

SCSIC: Peer Reviews and Security Testing

SP80053: SA-11, SA-15

SP800181: SP-DEV-001, SP-DEV-002; T0013, T0111, T0176, T0267, T0516; K0009,
K0039, K0070, K0140, K0624; S0019, S0060, S0078, S0137, S0149, S0167, S0174,
S0242, S0266; A0007, A0015, A0036, A0044, A0047

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

14

Practices Tasks Implementation Examples References

Test Executable Code to Identify
Vulnerabilities and Verify Compliance with
Security Requirements (PW.8): Help identify
vulnerabilities so that they can be corrected
before the software is released in order to
prevent exploitation. Using automated methods
lowers the effort and resources needed to detect
vulnerabilities. Executable code includes
binaries, directly executed bytecode and source
code, and any other form of code that an
organization deems executable.

PW.8.1: Determine if executable code testing should
be performed to identify and eliminate classes of
vulnerabilities not covered by previous reviews,
analysis, or testing, and if so, which types should be
used.

• Follow the organization’s policies or guidelines for when code testing should
be performed and how it should be conducted (e.g., within a sandboxed
environment). This may include third-party executable code and reusable
executable code modules written in-house.

BSAFSS: TV.3

IEC62443: SVV-1, SVV-2, SVV-3, SVV-4, SVV-5

SCSIC: Peer Reviews and Security Testing

SP80053: SA-11

SP800181: SP-DEV-001, SP-DEV-002; T0456; K0013, K0039, K0070, K0153, K0165,
K0342, K0367, K0536, K0624; S0001, S0015, S0026, S0061, S0083, S0112, S0135

PW.8.2: Design the tests, perform the testing, and
document the results, including documenting and
triaging all discovered issues and recommended
remediations in the development team’s workflow or
issue tracking system.

• Perform robust functional testing of security features.

• Integrate dynamic vulnerability testing into the project’s automated test suite.

• Incorporate tests for previously reported vulnerabilities into the project’s test
suite to ensure that errors are not reintroduced.

• Take into consideration the infrastructures and technology stacks that the
software will be used with in production when developing test plans.

• Use fuzz testing tools to find issues with input handling.

• If resources are available, use penetration testing to simulate how an attacker
might attempt to compromise the software in high-risk scenarios.

• Identify and document the root cause of each discovered issue.

• Document lessons learned from code testing in a knowledge base that
developers can access and search.

BSAFSS: TV.3, TV.5, PD.1-4

BSIMM: ST1.1, ST1.3, ST2.1, ST2.4, ST2.5, ST2.6, ST3.3, ST3.4, ST3.5, ST3.6, PT1.1,
PT1.2, PT1.3

IDASOAR: 7, 8, 10, 11, 38, 39, 43, 44, 48, 55, 56, 57

IEC62443: SM-5, SM-13, SI-1, SVV-1, SVV-2, SVV-3, SVV-4, SVV-5

ISO27034: 7.3.6

MSSDL: 10, 11

NISTDVS: 2.6, 2.7, 2.8, 2.9, 2.10, 2.11

OWASPMASVS: 7.5

OWASPSAMM: ST1-A, ST1-B, ST2-A, ST2-B, ST3-A

PCISSLC: 4.1

SCAGILE: Operational Security Tasks 10, 11; Tasks Requiring the Help of Security Experts
4, 5, 6, 7

SCFPSSD: Perform Dynamic Analysis Security Testing, Fuzz Parsers, Network
Vulnerability Scanning, Perform Automated Functional Testing of Security
Features/Mitigations, Perform Penetration Testing

SCSIC: Peer Reviews and Security Testing

SP80053: SA-11, SA-15

SP800181: SP-DEV-001, SP-DEV-002; T0013, T0028, T0169, T0176, T0253, T0266,
T0456, T0516; K0009, K0039, K0070, K0272, K0339, K0342, K0362, K0536, K0624;
S0001, S0015, S0046, S0051, S0078, S0081, S0083, S0135, S0137, S0167, S0242;
A0015

Configure Software to Have Secure Settings
by Default (PW.9): Help improve the security of
the software at the time of installation to reduce
the likelihood of the software being deployed
with weak security settings, putting it at greater
risk of compromise.

PW.9.1: Define a secure baseline by determining how
to configure each setting that has an effect on security
so that the default settings are secure and do not
weaken the security functions provided by the
platform, network infrastructure, or services.

• Conduct testing to ensure that the settings, including the default settings, are
working as expected and are not inadvertently causing any security
weaknesses, operational issues, or other problems.

BSAFSS: CF.1

IDASOAR: 23

IEC62443: SD-4, SVV-1, SG-1

ISO27034: 7.3.5

SCAGILE: Tasks Requiring the Help of Security Experts 12

SCSIC: Vendor Software Delivery Integrity Controls, Vendor Software Development Integrity
Controls

SP800181: SP-DEV-002; K0009, K0039, K0073, K0153, K0165, K0275, K0531; S0167

PW.9.2: Implement the default settings (or groups of
default settings, if applicable), and document each
setting for software administrators.

• Verify that the approved configuration is in place for the software.

• Document each setting’s purpose, options, default value, security relevance,
potential operational impact, and relationships with other settings.

• Use authoritative programmatic technical mechanisms to document how each
setting can be implemented and assessed by software administrators.

• Store the default configuration in a usable format and follow change control
practices for modifying it (e.g., configuration as code).

BSAFSS: CF.1

BSIMM: SE2.2

IDASOAR: 23

IEC62443: SG-3

OWASPSAMM: OE1-A

PCISSLC: 8.1, 8.2

SCAGILE: Tasks Requiring the Help of Security Experts 12

SCFPSSD: Verify Secure Configurations and Use of Platform Mitigation

SCSIC: Vendor Software Delivery Integrity Controls, Vendor Software Development Integrity
Controls

SP800181: SP-DEV-001; K0009, K0039, K0073, K0153, K0165, K0275, K0531

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

15

Practices Tasks Implementation Examples References

Respond to Vulnerabilities (RV)

Identify and Confirm Vulnerabilities on an
Ongoing Basis (RV.1): Help ensure that
vulnerabilities are identified more quickly so that
they can be remediated more quickly, reducing
the window of opportunity for attackers.

RV.1.1: Gather information from purchasers,
consumers, and public sources on potential
vulnerabilities in the software and third-party
components that the software uses, and investigate all
credible reports.

• Establish a vulnerability disclosure program, and make it easy for security
researchers to learn about your program and report possible vulnerabilities.

• Monitor vulnerability databases, security mailing lists, and other sources of
vulnerability reports through manual or automated means.

• Use threat intelligence sources to better understand how vulnerabilities in
general are being exploited.

• Regularly check the provenance and software composition data for each
software release in use to identify potential new vulnerabilities in its
components.

BSAFSS: VM.1-3, VM.3

BSIMM: CMVM1.2, CMVM3.4

CNCFSSCP: Securing Materials—Verification

IEC62443: DM-1, DM-2, DM-3

ISO29147: 6.2.1, 6.2.2, 6.2.4, 6.3, 6.5

ISO30111: 7.1.3

OWASPSAMM: IM1-A, IM2-B, EH1-B

OWASPSCVS: 4

PCISSLC: 3.4, 4.1, 9.1

SCAGILE: Operational Security Task 5

SCFPSSD: Vulnerability Response and Disclosure

SCTPC: MONITOR1

SP800181: K0009, K0038, K0040, K0070, K0161, K0362; S0078

RV.1.2: Review, analyze, and/or test the software’s
code to identify or confirm the presence of previously
undetected vulnerabilities.

• Configure the toolchain to perform automated code analysis and testing on a
regular or continuous basis.

• Automatically review provenance and software composition data for all
software components and dependencies to identify any new vulnerabilities
they have.

• [See PW.7 and PW.8]

BSAFSS: VM.1-2, VM.2-1

IEC62443: SI-1, SVV-2, SVV-3, SVV-4, DM-1, DM-2

ISO27034: 7.3.6

ISO29147: 6.4

ISO30111: 7.1.4

PCISSLC: 3.4, 4.1

SCAGILE: Operational Security Tasks 10, 11

SP80053: SA-11

SP800181: SP-DEV-002; K0009, K0039, K0153

RV.1.3: Have a policy that addresses vulnerability
disclosure and remediation, and implement the roles,
responsibilities, and processes needed to support that
policy.

• Have a Product Security Incident Response Team (PSIRT) and processes in
place to handle the responses to vulnerability reports and incidents.

• Have a security response playbook to handle a generic reported vulnerability,
a report of zero-days, a vulnerability being exploited in the wild, and a major
ongoing incident involving multiple parties and open-source software
components.

BSAFSS: VM.1-1, VM.2

BSIMM: CMVM1.1, CMVM2.1

IEC62443: DM-1, DM-2, DM-3, DM-4, DM-5

ISO29147: All

ISO30111: All

MSSDL: 12

OWASPMASVS: 1.11

OWASPSAMM: IM1-A, IM1-B, IM2-A, IM2-B

PCISSLC: 9.2, 9.3

SCFPSSD: Vulnerability Response and Disclosure

SP800160: 3.3.8

SP800181: K0041, K0042, K0151, K0292, K0317; S0054; A0025

Assess, Prioritize, and Remediate
Vulnerabilities (RV.2): Help ensure that
vulnerabilities are remediated as quickly as
necessary, reducing the window of opportunity
for attackers.

RV.2.1: Analyze each vulnerability to gather sufficient
information to plan its remediation.

• Use issue tracking software (existing software, if available) to document each
vulnerability.

• Estimate how much effort would be required to remediate the vulnerability.

• Estimate the potential impact of vulnerability exploitation.

• Estimate the resources needed to weaponize the vulnerability if that has not
already been done.

• Estimate any other relevant factors needed to plan the remediation of the
vulnerability.

BSAFSS: VM.2

BSIMM: CMVM1.2, CMVM2.2

IEC62443: DM-2, DM-3

ISO30111: 7.1.4

PCISSLC: 3.4, 4.2

SCAGILE: Operational Security Task 1, Tasks Requiring the Help of Security Experts 10

SP80053: SA-10

SP800160: 3.3.8

SP800181: K0009, K0039, K0070, K0161, K0165; S0078

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

16

Practices Tasks Implementation Examples References

RV.2.2: Develop and implement a remediation plan for
each vulnerability.

• Make a risk-based decision as to whether the vulnerability will be remediated
or if the risk will be addressed through other means (e.g., risk acceptance, risk
transference), and prioritize any actions to be taken

• If a permanent mitigation for a vulnerability is not yet available, determine how
the vulnerability can be temporarily mitigated until the permanent solution is
available, and add that temporary remediation to the plan.

• Develop and release security advisories that provide the necessary
information to software purchasers and consumers, including descriptions of
what has changed in the software and what configuration settings might need
to be changed, if any.

• Deliver the remediation to the purchasers and consumers via an automated
and trusted delivery mechanism.

BSAFSS: VM.1-1, VM-2

IEC62443: DM-4

ISO30111: 7.1.4, 7.1.5

PCISSLC: 4.1, 4.2, 10.1

SCAGILE: Operational Security Task 2

SCFPSSD: Fix the Vulnerability, Identify Mitigating Factors or Workarounds

SCTPC: MITIGATE

SP800160: 3.3.8

SP800181: T0163, T0229, T0264; K0009, K0070

Analyze Vulnerabilities to Identify Their Root
Causes (RV.3): Help reduce the frequency of
vulnerabilities in the future.

RV.3.1: Analyze all identified vulnerabilities to
determine the root cause of each vulnerability.

• Document the root cause of each discovered issue.

• Document lessons learned through root cause analysis in a knowledge base
that developers can access and search.

BSAFSS: VM.2-1

IEC62443: DM-3

ISO30111: 7.1.4

OWASPSAMM: IM3-A

PCISSLC: 4.2

SCFPSSD: Secure Development Lifecycle Feedback

SP800181: T0047, K0009, K0039, K0070, K0343

RV.3.2: Analyze the root causes over time to identify
patterns, such as a particular secure coding practice
not being followed consistently.

• Document lessons learned through root cause analysis in a knowledge base
that developers can access and search.

• Add mechanisms to the toolchain to automatically detect future instances of
the root cause.

BSAFSS: VM.2-1, PD.1-3

IEC62443: DM-4

ISO30111: 7.1.7

OWASPSAMM: IM3-B

PCISSLC: 2.6, 4.2

SCFPSSD: Secure Development Lifecycle Feedback

SP80053: SA-15

SP800160: 3.3.8

SP800181: T0111, K0009, K0039, K0070, K0343

RV.3.3: Review the software for similar vulnerabilities,
and proactively fix them rather than waiting for external
reports.

• [See PW.7 and PW.8] BSAFSS: VM.2

BSIMM: CMVM3.1

IEC62443: SI-1, DM-3, DM-4

ISO30111: 7.1.4

PCISSLC: 4.2

SP800181: SP-DEV-001, SP-DEV-002; K0009, K0039, K0070

RV.3.4: Review the SDLC process, and update it if
appropriate to prevent (or reduce the likelihood of) the
root cause recurring in updates to the software or in
new software that is created.

• Document lessons learned through root cause analysis in a knowledge base
that developers can access and search.

• Plan and implement changes to the appropriate SSDF practices.

BSAFSS: PD.1-3

BSIMM: CMVM3.2

IEC62443: DM-6

ISO30111: 7.1.7

MSSDL: 2

PCISSLC: 2.6, 4.2

SCFPSSD: Secure Development Lifecycle Feedback

SP80053: SA-15

SP800181: K0009, K0039, K0070

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

17

References 368

[BSAFSS] BSA (2020) The BSA Framework for Secure Software: A New Approach

to Securing the Software Lifecycle, Version 1.1. Available at

https://www.bsa.org/files/reports/bsa_framework_secure_software_updat

e_2020.pdf

[BSIMM] Migues S, Steven J, Ware M (2020) Building Security in Maturity Model

(BSIMM) Version 11. Available at https://www.bsimm.com/download/

[CNCFSSCP] Cloud Native Computing Foundation (2021) Software Supply Chain Best

Practices. Available at https://github.com/cncf/tag-

security/tree/main/supply-chain-security/supply-chain-security-paper

[IDASOAR] Hong Fong EK, Wheeler D, Henninger A (2016) State-of-the-Art

Resources (SOAR) for Software Vulnerability Detection, Test, and

Evaluation 2016. (Institute for Defense Analyses [IDA], Alexandria,

VA), IDA Paper P-8005. Available at https://www.ida.org/research-and-

publications/publications/all/s/st/stateoftheart-resources-soar-for-

software-vulnerability-detection-test-and-evaluation-2016

[IEC62443] International Electrotechnical Commission (IEC), Security for industrial

automation and control systems – Part 4-1: Secure product development

lifecycle requirements, IEC 62443-4-1, 2018. Available at

https://webstore.iec.ch/publication/33615

[ISO27034] International Organization for Standardization (ISO)/IEC, Information

technology – Security techniques – Application security – Part 1:

Overview and concepts, ISO/IEC 27034-1:2011, 2011. Available at

https://www.iso.org/standard/44378.html

[ISO29147] International Organization for Standardization (ISO)/IEC, Information

technology – Security techniques – Vulnerability disclosure, ISO/IEC

29147:2018, 2018. Available at https://www.iso.org/standard/72311.html

[ISO30111] International Organization for Standardization (ISO)/IEC, Information

technology – Security techniques – Vulnerability handling processes,

ISO/IEC 30111:2019, 2019. Available at

https://www.iso.org/standard/69725.html

[MSSDL] Microsoft (2021) Security Development Lifecycle. Available at

https://www.microsoft.com/en-us/securityengineering/sdl/

https://www.bsa.org/files/reports/bsa_framework_secure_software_update_2020.pdf
https://www.bsa.org/files/reports/bsa_framework_secure_software_update_2020.pdf
https://www.bsimm.com/download/
https://github.com/cncf/tag-security/tree/main/supply-chain-security/supply-chain-security-paper
https://github.com/cncf/tag-security/tree/main/supply-chain-security/supply-chain-security-paper
https://www.ida.org/research-and-publications/publications/all/s/st/stateoftheart-resources-soar-for-software-vulnerability-detection-test-and-evaluation-2016
https://www.ida.org/research-and-publications/publications/all/s/st/stateoftheart-resources-soar-for-software-vulnerability-detection-test-and-evaluation-2016
https://www.ida.org/research-and-publications/publications/all/s/st/stateoftheart-resources-soar-for-software-vulnerability-detection-test-and-evaluation-2016
https://webstore.iec.ch/publication/33615
https://www.iso.org/standard/44378.html
https://www.iso.org/standard/72311.html
https://www.iso.org/standard/69725.html
https://www.microsoft.com/en-us/securityengineering/sdl/

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

18

[NISTCSF] National Institute of Standards and Technology (2018) Framework for

Improving Critical Infrastructure Cybersecurity, Version 1.1. (National

Institute of Standards and Technology, Gaithersburg, MD).

https://doi.org/10.6028/NIST.CSWP.04162018

[NISTDVS] Black P, Guttman B, Okun V (2021) Guidelines on Minimum Standards

for Developer Verification of Software. (National Institute of Standards

and Technology, Gaithersburg, MD). Available at

https://www.nist.gov/system/files/documents/2021/07/13/Developer%20

Verification%20of%20Software.pdf

[NTIASBOM] National Telecommunications and Information Administration (NTIA)

(2021) The Minimum Elements For a Software Bill of Materials (SBOM).

Available at https://www.ntia.doc.gov/report/2021/minimum-elements-

software-bill-materials-sbom

[OWASPASVS] Open Web Application Security Project (2020) OWASP Application

Security Verification Standard 4.0.2. Available at

https://github.com/OWASP/ASVS

[OWASPMASVS] Open Web Application Security Project (2021) OWASP Mobile

Application Security Verification Standard, Version 1.3. Available at

https://github.com/OWASP/owasp-masvs/releases

[OWASPSAMM] Open Web Application Security Project (2017) Software Assurance

Maturity Model Version 1.5. Available at

https://www.owasp.org/index.php/OWASP_SAMM_Project

[OWASPSCVS] Open Web Application Security Project (2020) OWASP Software

Component Verification Standard, Version 1.0. Available at

https://github.com/OWASP/Software-Component-Verification-Standard

[PCISSLC] Payment Card Industry (PCI) Security Standards Council (2021) Secure

Software Lifecycle (Secure SLC) Requirements and Assessment

Procedures Version 1.1. Available at

https://www.pcisecuritystandards.org/document_library?category=sware

_sec#results

[SCAGILE] Software Assurance Forum for Excellence in Code (2012) Practical

Security Stories and Security Tasks for Agile Development Environments.

Available at

http://www.safecode.org/publication/SAFECode_Agile_Dev_Security07

12.pdf

[SCFPSSD] Software Assurance Forum for Excellence in Code (2018) Fundamental

Practices for Secure Software Development: Essential Elements of a

https://doi.org/10.6028/NIST.CSWP.04162018
https://www.nist.gov/system/files/documents/2021/07/13/Developer%20Verification%20of%20Software.pdf
https://www.nist.gov/system/files/documents/2021/07/13/Developer%20Verification%20of%20Software.pdf
https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom
https://www.ntia.doc.gov/report/2021/minimum-elements-software-bill-materials-sbom
https://github.com/OWASP/ASVS
https://github.com/OWASP/owasp-masvs/releases
https://www.owasp.org/index.php/OWASP_SAMM_Project
https://github.com/OWASP/Software-Component-Verification-Standard
https://www.pcisecuritystandards.org/document_library?category=sware_sec#results
https://www.pcisecuritystandards.org/document_library?category=sware_sec#results
http://www.safecode.org/publication/SAFECode_Agile_Dev_Security0712.pdf
http://www.safecode.org/publication/SAFECode_Agile_Dev_Security0712.pdf

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

19

Secure Development Lifecycle Program, Third Edition. Available at

https://safecode.org/wp-

content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure

_Software_Development_March_2018.pdf

[SCSIC] Software Assurance Forum for Excellence in Code (2010) Software

Integrity Controls: An Assurance-Based Approach to Minimizing Risks

in the Software Supply Chain. Available at

http://www.safecode.org/publication/SAFECode_Software_Integrity_Co

ntrols0610.pdf

[SCTPC] Software Assurance Forum for Excellence in Code (2017) Managing

Security Risks Inherent in the Use of Third-Party Components. Available

at https://www.safecode.org/wp-

content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf

[SCTTM] Software Assurance Forum for Excellence in Code (2017) Tactical

Threat Modeling. Available at https://www.safecode.org/wp-

content/uploads/2017/05/SAFECode_TM_Whitepaper.pdf

[SP80053] Joint Task Force (2020) Security and Privacy Controls for Information

Systems and Organizations. (National Institute of Standards and

Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-53,

Rev. 5. Includes updates as of December 10, 2020.

https://doi.org/10.6028/NIST.SP.800-53r5

[SP800160] Ross R, McEvilley M, Oren J (2016) Systems Security Engineering:

Considerations for a Multidisciplinary Approach in the Engineering of

Trustworthy Secure Systems. (National Institute of Standards and

Technology, Gaithersburg, MD), NIST Special Publication (SP) 800-

160, Volume 1, Includes updates as of March 21, 2018.

https://doi.org/10.6028/NIST.SP.800-160v1

[SP800181] Newhouse W, Keith S, Scribner B, Witte G (2017) National Initiative for

Cybersecurity Education (NICE) Cybersecurity Workforce Framework.

(National Institute of Standards and Technology, Gaithersburg, MD),

NIST Special Publication (SP) 800-181.

https://doi.org/10.6028/NIST.SP.800-181

https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
http://www.safecode.org/publication/SAFECode_Software_Integrity_Controls0610.pdf
http://www.safecode.org/publication/SAFECode_Software_Integrity_Controls0610.pdf
https://www.safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf
https://www.safecode.org/wp-content/uploads/2017/05/SAFECode_TPC_Whitepaper.pdf
https://www.safecode.org/wp-content/uploads/2017/05/SAFECode_TM_Whitepaper.pdf
https://www.safecode.org/wp-content/uploads/2017/05/SAFECode_TM_Whitepaper.pdf
https://doi.org/10.6028/NIST.SP.800-53r5
https://doi.org/10.6028/NIST.SP.800-160v1
https://doi.org/10.6028/NIST.SP.800-181

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

20

The SSDF and Executive Order 14028 369

The President’s Executive Order (EO) on “Improving the Nation’s Cybersecurity (14028)” 370

issued on May 12, 2021, charged multiple agencies – including NIST – with enhancing 371

cybersecurity through a variety of initiatives related to the security and integrity of the software 372

supply chain. 373

Section 4 of the EO directed NIST to solicit input from the private sector, academia, government 374

agencies, and others and to identify existing or develop new standards, tools, best practices, and 375

other guidelines to enhance software supply chain security. Table 2 maps the clauses from 376

Section 4 of the EO to the SSDF practices and tasks that help address each clause. 377

Table 2: SSDF Practices Corresponding to EO 14028 Clauses 378

EO 14028
Clause

SSDF Practices and Tasks

4(c) All practices and tasks

4(e)(i)(A) PO.5.1

4(e)(i)(B) PO.5.1

4(e)(i)(C) PO.5.2

4(e)(i)(D) PO.5.1

4(e)(i)(E) PO.5.2

4(e)(i)(F) PO.3.2, PO.3.3, PO.5.1, PO.5.2

4(e)(ii) PO.3.2, PO.3.3, PO.5.1, PO.5.2

4(e)(iii) PO.3.1, PO.3.2, PO.5.1, PO.5.2, PS.1.1, PS.2.1, PS.3.1, PW.4.5

4(e)(iv) PO.4.1, PO.4.2, PS.1.1, PW.2.1, PW.4.4, PW.5.1, PW.6.1, PW.6.2, PW.7.1, PW.7.2, PW.8.2,
PW.9.1, PW.9.2, RV.1.1, RV.1.2, RV.2.1, RV.2.2, RV.3.3

4(e)(v) PO.3.2, PO.3.3, PO.4.1, PO.5.1, PO.5.2, PW.1.2, PW.2.1, PW.7.2, PW.8.2, RV.2.2

4(e)(vi) PO.1.3, PO.3.2, PO.5.1, PS.3.1, PS.3.2, PW.4.1, PW.4.5, RV.1.2

4(e)(vii) PS.3.2

4(e)(viii) RV.1.1, RV.1.2, RV.1.3, RV.2.1, RV.2.2, RV.3.3

4(e)(ix) All practices and tasks

4(e)(x) PO.1.3, PS.3.2, PW.4.1, PW.4.4, PW.4.5

https://www.federalregister.gov/d/2021-10460
https://www.federalregister.gov/d/2021-10460/p-56
https://www.federalregister.gov/d/2021-10460/p-60
https://www.federalregister.gov/d/2021-10460/p-61
https://www.federalregister.gov/d/2021-10460/p-62
https://www.federalregister.gov/d/2021-10460/p-63
https://www.federalregister.gov/d/2021-10460/p-64
https://www.federalregister.gov/d/2021-10460/p-65
https://www.federalregister.gov/d/2021-10460/p-66
https://www.federalregister.gov/d/2021-10460/p-67
https://www.federalregister.gov/d/2021-10460/p-68
https://www.federalregister.gov/d/2021-10460/p-69
https://www.federalregister.gov/d/2021-10460/p-70
https://www.federalregister.gov/d/2021-10460/p-71
https://www.federalregister.gov/d/2021-10460/p-72
https://www.federalregister.gov/d/2021-10460/p-73
https://www.federalregister.gov/d/2021-10460/p-74

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

21

Acronyms 379

Selected acronyms and abbreviations used in this document are defined below. 380

BSIMM Building Security In Maturity Model

CISQ Consortium for Information & Software Quality

CNCF Cloud Native Computing Foundation

COTS Commercial-Off-the-Shelf

CPS Cyber-Physical System

DevOps Development and Operations

EO Executive Order

GOTS Government-Off-the-Shelf

ICS Industrial Control System

IDA Institute for Defense Analyses

IEC International Electrotechnical Commission

IoT Internet of Things

ISO International Organization for Standardization

ISPAB Information Security and Privacy Advisory Board

IT Information Technology

ITL Information Technology Laboratory

KPI Key Performance Indicator

KRI Key Risk Indicator

MITA Medical Imaging & Technology Alliance

NAVSEA Naval Sea Systems Command

NICE National Initiative for Cybersecurity Education

NIST National Institute of Standards and Technology

NTIA National Telecommunications and Information Administration

OWASP Open Web Application Security Project

PCI Payment Card Industry

PSIRT Product Security Incident Response Team

SAFECode Software Assurance Forum for Excellence in Code

SAMM Software Assurance Maturity Model

SBOM Software Bill of Materials

SDL [Microsoft] Security Development Lifecycle

SDLC Software Development Life Cycle

SEI Software Engineering Institute

SLC Software Lifecycle

SOAR State-of-the-Art Resources

SSDF Secure Software Development Framework

NIST SP 800-218 (DRAFT) SSDF VERSION 1.1

22

Change Log 381

This appendix summarizes the most noteworthy changes from the original SSDF, published in 382

April 2020, to this draft: 383

• References 384

o Added CNCFSSCP, IEC62443, ISO29147, ISO30111, NISTDVS, 385

OWASPMASVS, OWASPSCVS 386

o Updated BSAFSS, BSIMM, OWASPASVS, PCISSLC 387

o Deleted OWASPTEST 388

• Practices 389

o Added PO.5 390

o Deleted PW.3 (merged into PW.4) 391

• Tasks 392

o Added PO.1.2, PO.5.1, PO.5.2, PS.3.2, PW.1.2 393

o Moved PW.3.1 to PO.1.3; moved PW.3.2 to PW.4.5; moved PW.4.3 to PW.1.3 394

o Demoted PW.5.2 to a PW.5.1 example 395

• SSDF Table Conventions 396

o Retired identifiers for deleted/moved practices and tasks (PW.3, PW.3.1, PW.3.2, 397

PW.4.3, and PW.5.2) 398

o Added colored borders and shaded rows for each group of practices; indicated 399

retired practices and tasks by a lack of shading 400

• Converted the content from a white paper to a Special Publication 800-series document 401

• Added Appendix A 402

https://doi.org/10.6028/NIST.CSWP.04232020

	Executive Summary
	1 Introduction
	2 The Secure Software Development Framework
	References
	Appendix A— The SSDF and Executive Order 14028
	Appendix B— Acronyms
	Appendix C— Change Log

