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Abstract: Video conferencing apps (VCAs) make it

possible for previously private spaces — bedrooms, liv-

ing rooms, and kitchens — into semi-public extensions

of the office. For the most part, users have accepted

these apps in their personal space without much thought

about the permission models that govern the use of their

private data during meetings. While access to a device’s

video camera is carefully controlled, little has been done

to ensure the same level of privacy for accessing the mi-

crophone. In this work, we ask the question: what hap-

pens to the microphone data when a user clicks the mute

button in a VCA? We first conduct a user study to an-

alyze users’ understanding of the permission model of

the mute button. Then, using runtime binary analysis

tools, we trace raw audio flow in many popular VCAs

as it traverses the app from the audio driver to the net-

work. We find fragmented policies for dealing with mi-

crophone data among VCAs — some continuously mon-

itor the microphone input during mute, and others do

so periodically. One app transmits statistics of the audio

to its telemetry servers while the app is muted. Using

network traffic that we intercept en route to the teleme-

try server, we implement a proof-of-concept background

activity classifier and demonstrate the feasibility of in-

ferring the ongoing background activity during a meet-

ing — cooking, cleaning, typing, etc. We achieved 81.9%

macro accuracy on identifying six common background

activities using intercepted outgoing telemetry packets

when a user is muted.
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1 Introduction

As the de facto alternative for in-person meetings dur-

ing the COVID-19 pandemic, the demand for online

video conferencing for professional and personal use in-

creased significantly. Video Conference Apps (VCAs),

such as Zoom, Slack, Teams, and Webex, became avail-

able on all modern devices and operating systems. To

support their functionality, these VCAs require access

to the device’s microphone and camera. Operating sys-

tems (OSes) provide the users with permission controls

that allow the app to access the microphone and cam-

era. Once granted, the app has access to both hardware

resources until the user revokes the permission.

In addition to OS-based controls, VCAs provide

their users with two privacy control mechanisms dur-

ing a call: turning off the camera and muting the mi-

crophone. In most OSes, such as Windows and macOS,

turning off the camera from the app engages an OS-level

control which prevents the app from accessing the cam-

era. A visible hardware indicator (e.g., a light near the

camera) informs the user whether an app is accessing

their camera. On the other hand, the implementation

of the mute button is app-dependent and rarely has a

visible hardware indicator. OSes do not expose an easily

accessible microphone switch to the apps without going

through many steps (e.g., via a control panel).

Apart from smart speakers, which pose tangible pri-

vacy threats, the mute button has received little atten-

tion in the context of VCAs. Previous research investi-

gates users’ privacy attitudes towards VCAs and alludes

to the mute button as a privacy control tool available

to the users during a virtual meeting [17, 25]. However,

the mute button’s privacy implications during the in-

teractions between the user and VCAs have not been

adequately addressed.

This paper investigates the privacy issues associated

with the mute button in VCAs, focusing on whether a

mismatch exists between the user’s perception of the

mute button and its actual behavior. We follow a two-

pronged strategy to guide our investigation. First, we

† Both authors contributed equally to this work.
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design a user study to uncover what the users think the

mute button does (i.e., their understanding) and what

they believe it should do (i.e., their expectations). Sec-

ond, we compare the user study findings against an em-

pirical investigation of the actual behavior of the mute

button across a range of VCAs and operating systems.

We conducted a user study with 223 participants

recruited from Prolific. Our user study revealed that

the participants perceive the mute button of VCAs as a

privacy control, preventing other meeting participants

from overhearing them. We observed a dichotomy in

the understanding of the mute button: participants were

split about whether a VCA accesses the microphone af-

ter they click the mute button. However, most of them

indicated that the VCA should access the microphone

only when unmuted.

Based on the findings from the user study, we em-

pirically characterized the conditions in which the VCA

actively queries the microphone in different operating

systems. This task was challenging because OSes only

log microphone accesses for each app; they do not pro-

vide fine-grained statistics about microphone queries.

We addressed this challenge by instrumenting Windows,

macOS, Linux, and the Chromium browser to track the

fine-grained microphone queries by popular VCAs. We

conducted a set of experiments on each VCA-OS com-

bination to monitor the API accesses of each VCA un-

der different conditions. We discovered that all of the

apps in our study could actively query (i.e., retrieve raw

audio) the microphone when the user is muted. Inter-

estingly, in both Windows and macOS, we found that

Cisco Webex queries the microphone regardless of the

status of the mute button.

We followed our instrumentation efforts with an

analysis of Webex, a popular VCA for the enterprise

setting. We analyzed how it processes the queried mi-

crophone data to determine whether any audio-derived

data leaves the device. This analysis also proved chal-

lenging as the VCAs, such as Webex, encrypt outgo-

ing traffic. Further, tracking the data flow within apps

is not straightforward because they employ proprietary

and obfuscated libraries. To facilitate tracking of au-

dio data, we performed a backward search from the

encrypted network traffic to locate the inputs to the

encryption functions. This search allowed us to decrypt

the contents of the network packets sent by Webex to its

servers. We discovered that Webex sent periodic packets

containing audio-derived telemetry data to its servers,

even when the microphone was muted. Although these

packets are transmitted at a low rate (once per minute),

their audio-derived values correlate with the volume lev-

els of background activities.

To verify our hypothesis, we present a classifier

to fingerprint background activities from these teleme-

try values. Training this classifier was also challenging.

Without access to the proprietary algorithm that gen-

erates the audio-derived data, it is not feasible to use

existing audio datasets to create training data for the

classifier. Furthermore, the training data has to repre-

sent real-world situations, including realistic noise types

and varying volume levels. We address this challenge by

collecting Webex-based telemetry data corresponding to

more than 200 hours of background activities. Our eval-

uation of the classifier with over-the-air data shows that

telemetry data from Webex can conclusively fingerprint

a set of popular user activities, such as music, chat-

ting, and vacuum cleaning. We demonstrate that even

with user data that is compressed and transmitted on

a minute-by-minute basis, some activities have unique

patterns that are discernable in Webex’s telemetry data.

Our key contributions are as follows.

– User Study: We conduct a user study with 223 VCA

participants to assess their understanding and ex-

pectations regarding the mute button (Sec. 3).

– Audio Access Tracing: We analyze VCAs’ fine-

grained access to the microphone; we found that

most VCAs have access to audio-derived data even

when the user is muted (Sec. 4).

– Webex-based Case Study: We conduct a thorough

system-level study of the Webex Windows client.

We discover that, in contradiction to its claims in

the privacy policy, Webex sends periodic audio-

derived data to its servers (Sec. 5).

– Background Activity Detection: We present a de-

sign for a machine learning model the infers back-

ground activities from Webex’s audio-derived data

(Sec. 5.3).

– Mitigation Strategies: We distill our findings in the

form of mitigation strategies that provide users with

better control over the mute button (Sec. 6).

2 Related Work

In the following, we discuss the recent results about the

privacy of VCAs. While there is existing research study-

ing possible exfiltration of audio and video data from

mobile apps [37], we focus on the research specific to

VCAs. We also include related work about mute but-
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tons in the context of smart speakers. Finally, we discuss

the work surrounding background activity recognition,

which is relevant for our analysis in Sec. 5.3.

Privacy Issues in VCAs

The security and privacy of video conferencing plat-

forms has been studied since the early 2010s. In 2013,

Kilpi et al. examined privacy and security issues in fu-

ture (at that time) videoconferencing technologies [25].

They discuss the mute button as a necessary privacy

control for the users. More recently, Emami-Naeini per-

formed an online user study to understand the user

concerns with VCAs [17]. They found that users are

concerned about the security and privacy properties of

VCAs. They also found that individuals consider the

mute button as a privacy control: they perceive privacy

violations from forgetting to press the mute button.

During the pandemic, more people were exposed to

privacy and security risks caused by VCAs [34, 38]. In

2019, Zoom fixed a camera leakage vulnerability caused

by its casual use of a local web server [35]. Mean-

while, real-time background blurring for VCAs is widely

adopted to protect user’s privacy in an office or home

environment [36, 45]. However, VCAs may leak a user’s

video privacy in many ways. Kagan et al. [23] demon-

strated that collage images of video conference meetings

posted on public websites may leak sensitive informa-

tion such as users’ names, ages and genders. Altschaf-

fel et al. [8] showed that traffic patterns of encrypted

metadata and multimedia data exchanged during VCA

meetings, can be used to identify increased activity in

front of camera or even identify users. There are also

concerns with the information that VCAs collect about

their users. For example, Consumer Reports identified

privacy concerns with the data collection practices of

popular VCAs, such as Zoom, Google Meet, Microsoft

Teams, and Cisco Webex [40]. These concerns centered

around the purposes of collecting metadata from the

meetings.

In this paper, we follow-up on these previously-

reported vulnerabilities and privacy studies. In particu-

lar, we study the users’ understanding and expectation

of the mute button, and whether they match the VCAs’

behavior. We focus on the interaction between the VCA

and the user’s microphone when the user presses the

mute button, as opposed to previous research that stud-

ies the mute button in the context of protecting the

user’s privacy from other meeting participants.

Mute Button in Voice Assistants

Researchers have also considered the privacy issues from

always-listening smart home devices[6, 26]. Smart home

devices continuously process the raw audio to detect a

trigger word or phrase. As such, the privacy threats arise

from these devices accidentally or maliciously recording

the user’s background activities [7]. Researchers have

first discussed the efficacy of the physical mute but-

ton as a privacy control to mitigate these threats. The

mute button was found to be inconvenient and suffer-

ing from user trust issues [14, 26]. Follow-up works pro-

posed other privacy controls, such as ultrasound jam-

ming [14, 15, 41], cutting the power [14], and employing

interpersonal communication cues [32].

Contrary to the smart device case, VCA users

widely utilize the mute button to prevent others from

listening to their background activities (Sec. 3). Users

trust that other meeting participants cannot hear them

after applying the mute button. However, the behavior

of the VCA, after applying the mute button, is less un-

derstood. In this paper, we characterize the operation of

the mute button from the perspective of the interaction

between the user and the VCA.

Activity Fingerprinting

Finally, we discuss research about fingerprinting activ-

ities from audio-derived data. User activities and con-

textual information, including walking, driving, and rid-

ing, can be inferred from ambient sound. Lu et al. [29]

presents an audio event classifier that identify user’s cur-

rent activities utilizing the microphone input of mobile

phones. Not only the ambient sound, but encrypted au-

dio traffic can be used to infer user’s private informa-

tion. Previous studies proved that encrypted IoT traffic

might leak private information of their environment, in-

cluding device status and user activities. Traffic analysis

of the video streams from home security cameras en-

ables monitoring daily activity patterns [11, 16, 28]. Li

et al. [27] further demonstrated the possibility of detect-

ing fine-grained activities, including dressing, moving,

and eating, from encrypted home security camera traf-

fic. They selected features such as traffic packet size and

length distribution. Similar to encrypted traffic analy-

sis, Schuster et al.[39] performed an encrypted Video

Stream Identification by analyzing bitrate burst and

time interval of video streaming traffic. They utilized

the segment transmission mechanism of MPEG-DASH

and successfully identified Netflix video titles using a

trained classifier.
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Kennedy et al. and Wang et al. [24, 43] demon-

strated that an attacker can infer which voice commands

a user says to a smart speaker, by eavesdropping and an-

alyzing outgoing encrypted traffic from smart speakers

to a cloud server. Wang et al. [43] further manifested

the incoming traffic from the server also leak voice com-

mands information. Moreover, Bae et al. [5] presented

a video streaming service identification attack by mon-

itoring video downstreaming traffic through LTE net-

works with high accuracy.

These research works demonstrate that data derived

from audio streams can be used to fingerprint their con-

tent and is therefore relevant to our discussion in Sec. 5.3

about inferring the background activities while the user

is muted.

3 User Study

Our first objective is to study the user perceptions of the

mute button along with their understanding of its func-

tionality. Towards that end, we conduct an online user

study with 230 VCA users. Our study aims to answer

two questions about VCA users: (1) When do they think

the VCA accesses their microphone? and (2) When do

they think the VCA should access their microphone?.

Answering these questions allows us to characterize the

user’s understanding and expectations of the mute but-

ton, respectively. In the following, we describe the design

of the user study, the recruitment, and the findings.

3.1 Study Design

We designed a Qualtrics survey1 to help answer our re-

search questions. We used partial disclosure to hide the

fact that the study was about the privacy implications

of the mute button. The description of the survey and

its title focus on capturing the users’ general experi-

ence with VCAs during the pandemic. The survey has

four major sections; the first section collects optional

demographic information. The second section collects

information about the preferred VCA and frequency of

usage.

The third section asks the respondents about their

experience with the mute button. We adapt the ques-

tions from Lau et al. [26], which studies the mute but-

1 The full survey can be found here: https://osf.io/szd4x/

ton in smart speakers. In particular, we probe the users

about their usage of the mute button, their reasons, and

their understanding of its functionality using questions

in Table 1. This section contains three open-ended ques-

tions and two multiple-choice questions.

The last section adopts a refined version of Internet

Users’ Information Privacy Concerns (IUIPC-8) from

Groß [21] to measure the participants’ privacy concern.

This survey section contains the first mention of pri-

vacy, after the respondents have answered the questions

related to the mute button. Finally, the survey includes

two attention checker questions and was exempted by

the IRB at our institution.

Participant Recruitment and Demographics

We recruited participants from the Prolific data collec-

tion platform. We employed Prolific’s prescreening crite-

ria to enforce gender balance and to forward the survey

to only those who have worked from home during the

COVID-19 pandemic with 90% approval rate in previ-

ous studies. Before conducting the survey, we conducted

a pilot study with 15 users to calibrate the payment

and ensure that the study design is clear. Through Pro-

lific, we were able to recruit 299 participants, where we

kept 223 responses from participants who passed the

attention checkers. The median completion time was 8

minutes, and we paid each participant $1.5; the median

hourly rate was $11.

Among our participants, 96.8% are between 18 to

44 years old, 63.2% of them work in sales, service, man-

agement and professional industry, and 82.5% achieved

at least a college degree. During COVID-19, 54.7% of

our participants answered that they have used video

conferencing apps more than once a day and 40% of

them used once a day or once every few days. The most

popular video-conferencing app among the participants

is Zoom, and the other popular apps include Microsoft

Teams, Google Meet and Cisco Webex.

We map the responses to the IUIPC-8 question to

a score based on seven-point Likert scale, represent-

ing participant’s privacy attitudes. The average scores

is 2.02 for all participants, implying that most partici-

pants are privacy-conscious in our study. The value of

Cronbach Alpha Index is 0.7915 for privacy attitudes

responses from 223 participants, which indicates a good

internal consistency and reliability of these responses.

https://osf.io/szd4x/
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Open Ended Questions

Q1. Why do you use the mute button?

Q2. What activities do you perform or

take place in your background when

you are muted?

Q3. Please describe what does the app

do when you press the mute button.

Multiple Choice Questions

Q4. For your most frequently used

video meeting app, when do you think

it has access to your microphone?

Q5. For your most frequently used

video meeting app, when should it

have access to your microphone?

Multiple Choice Answers for Q4 and Q5

S1. When the app is not running.

S2. You start the app but are not in a meeting.

S3. You’re in a meeting but you apply the mute button

in the app.

S4. You’re in a meeting and you are unmuted.

S5. You leave the meeting while the app is still running.

Table 1. The main questions used in the user study. Q1-Q3 are open-ended questions with answers coded by researchers. Q4 and Q5

are multiple choice questions where the participant selects one or more statements from S1-S5 in response. The full list of questions is

available in the Appendix.

Fig. 1. The distribution of the codes about reasons users reported

for using the mute button as extracted from answers to Q1.

3.2 Findings

We report the key findings from our user study, through

analyzing the participants’ responses. We coded the re-

sponses to the open-ended questions (Q1, Q2, and Q3 )

following this procedure. For each question, two au-

thors independently coded the responses, after which

they generated a consolidated codebook describing the

responses. For Q1, we settled on five codes about the

reasons for which participants use the mute button. For

Q2, the codebook consists of twelve codes describing the

background activities. The codebook for Q3 contains

nine codes representing the participants’ description of

the mute button operation. Then, each coder indepen-

dently coded the first 30 responses for each question;

the resulting Cohen’s kappa is 0.85 for Q1, 0.90 for

Q2, and 0.82 for Q3, indicating strong agreement [30].

The coders split and coded the rest of the responses.

See detailed codebooks of the open-ended questions in

Appendix E.

Usage Patterns: We start by analyzing the responses

to Q1, where 214 participants out of 223 indicated that

they have used the mute button before. The responses

for Q1, as shown in Fig. 1, reveal two main reasons

why users employ the mute button: (1) hide background

activities and (2) avoid interrupting or disturbing others

on the call. It is interesting that the participants regard

Fig. 2. The distribution of the codes about the background activ-

ities as extracted from answers to Q2.

Fig. 3. The distribution of the codes about the users’ understand-

ing of the mute button operation from answers to Q3.

the mute button as a privacy control measure to prevent

others from hearing them. For example, P19 mentioned

the reason for using the mute button is: “So that people

won’t listen to private activities or conversations.”

The responses for Q2 indicate an array of back-

ground activities the participants perform while muted,

as indicated in Fig. 2. Participants mentioned more

than one activity in their responses; For example, P166

mentioned: “Talking, loud video watching, cat activ-

ity (meows, occasional falling and crashing of items),

cleaning (including vacuuming).” The most prevalent

activity was related to preparing food, cooking, snack-

ing, or eating. Other frequent activities include chat-

ting, watching TV, cleaning, typing, or watching online

videos. We elaborate more on these background activi-

ties in Sec. 5.3.
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Fig. 4. The distribution of responses to Q4. The statements S1-

S5 are defined in Table 1.

Understanding of the Mute Button: As indicated

earlier, we asked the participants two questions (Q3

and Q4 ) to gauge their understanding of the mute but-

ton. To gain initial insights into the participants’ un-

derstanding of the mute button, we study the coded

responses to Q3, as evident from Fig. 3. The most fre-

quent response was that by using the mute button, the

app prevents others in the call from hearing the user.

For example, P16 indicated that: “It doesn’t produce my

audio on the other participant’s platform or computer.”

Moreover, other participants focused on the interface

change when the mute button is pressed, as in the case

of P119 : “It shows me the mic with a line crossing it sig-

nalling it is not working.” . Meanwhile, 59 participants

mention that the mute button disables the microphone.

For example, P161 mentions: “When I press the mute

button, my microphone is muted and disabled on the app

from picking up any sound waves from where I am.”

For Q4, we provide five situations, S1-S5, in our user

study as shown in Table 1. The responses to Q4 indicate

that the participants exhibit a diverse understanding of

the operation of the mute button, as shown in Fig. 4.

Out of the 223 responses, 69 participants selected only

S4 as a response to Q4. These participants think the

app only accesses the microphone when they are in the

meeting and the mute button is not pressed.

Further, we found that the participants were split

in their selection of S3 as a response to Q4. Nearly half

of the participants (111) did not select S3, indicating

that the app does not access the microphone when the

mute button is pressed. The other half indicated that

the app accesses the microphone, even when muted. In-

terestingly, we observe that 49 participants selected S2,

S3, S4, S5 when responding to Q4, indicating that the

app accesses the microphone as long as it is running.

Also, we observe that 36 participants selected S3 and

S4, indicating that the app accesses the microphone as

long as the user is in a meeting. In all the cases above,

Fig. 5. The distribution of responses to Q5. The statements S1-

S5 are defined in Table 1.

we found no correlation between the responses and the

IUIPC-8 privacy attitude scores.

Expectations of the Mute Button: Finally, we an-

alyze the responses to Q5, about when do the partic-

ipants think the VCAs should access the microphone.

The responses reveal that the participants have clear

expectations about the operation of the mute button,

as indicated in Fig. 5. Among the 223 responses, 173

participants selected only S4 as a response to Q5. These

participants indicated that the app should only access

the microphone when the meeting is running and the

user is unmuted. Interestingly, 27 respondents selected

both S3 and S4 as a response to Q5.

In conclusion, the results from the user study sug-

gest that the user’s understanding of the mute button

does not match their expectations of its behavior. In

the rest of this paper, we study the actual behavior of

the mute button and analyze whether it matches user

understanding and expectations.

4 Analysis of Mute Button

Following the results from our user study, we investi-

gate whether the actual behavior of VCAs matches user

expectation by focusing on desktop environments. Our

objectives are to determine: (1) if VCAs actively access

the microphone when muted and (2) what kind of in-

dicators (if any) they give users that the microphone is

being accessed.

4.1 Overview of VCAs and Platforms

There are two broad categories of runtime environments

in which VCAs execute: native apps that run directly

in the operating system and web apps hosted by a web
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App Windows Linux macOS

Zoom (Enterprise) X X X

Slack X X X

MS Teams/Skype X ✕ X

Google Meet ◦ ◦ ◦

Cisco Webex X ◦ X

BlueJeans X ◦ X

WhereBy ◦ ◦ X

GoToMeeting X ◦ X

Jitsi Meet X ◦ X

Discord ◦ X ◦

Table 2. A summary of the VCAs we studied. X: native app

◦: web-based app ✕: No implementation.

browser. Each has a different permission model for ac-

cessing the microphone. Most of the VCAs we study in

this work have a native app implementation for the ma-

jor operating systems (macOS and Windows) and a web

app used on unsupported platforms (Linux and others).

The VCAs that we studied (listed in Table 2) exhibit a

consistent look and feel across platforms. Their imple-

mentation, however, on each platform is different, due

to syscall interfaces and display APIs. Zoom on Win-

dows, for example, is a self-contained Windows-specific

software package. Zoom on macOS has a similar user in-

terface to its Windows counterpart, but the underlying

code base appears to be different.

Native apps can collect data from the micro-

phone with few restrictions. Web apps—implemented in

JavaScript— request access to the microphone through

a web browser, which generally has more restrictive poli-

cies for data collection and more tools that allow the

user to control the app’s access to hardware.

Browser Based Apps

Browser-based VCAs rely on their host browser to me-

diate their interactions with the operating system and

the hardware. The browser-based VCAs that we stud-

ied are implemented entirely in JavaScript, and they use

a special-purpose API called WebRTC [19] for driver

interactions—including microphone accesses—that are

typically not available to web apps. WebRTC is a na-

tive interface written in C++ and C, acting as a driver

for the hardware within the browser that can call the

operating system to access the microphone. Information

transferred by WebRTC is subject to controls and poli-

cies of the browser. Web-based VCAs are sandboxed

inside the browser and do not circumvent WebRTC.

There are two ways a user can mute a web-based

VCA: (1) using a browser-level mute button or (2) us-

ing a WebRTC software mute signal from the app. Both

techniques are more trustworthy than app-controlled

mute because they are implemented and enforced by

the browser, not the app.

The browser-level mute button completely disables

microphone access to the VCA, as if the microphone

is not active within the system. Web-based VCAs also

implement an app-level mute button, which has simi-

lar functionality to the browser-level mute: it enables

a software mute inside of WebRTC, disabling all au-

dio transfers from the microphone. Users must trust the

web-based VCA to use the software mute functionality

rather than some internal mute button implementation.

We found that all of the studied apps use the WebRTC

mute functionality correctly. Furthermore, it is straight-

forward to verify that web-based VCAs correctly use the

software mute functionality through source code audits

and the WebRTC debugger built into Chromium.

Native Video Conferencing Apps

Native VCAs can directly call the operating system to

retrieve audio data from the microphone. Most of them

abide by the operating system (OS) rules to access the

microphone data, with some exceptions. The OS im-

poses fewer restrictions on native apps than the browser

runtime environment imposes on web apps.

All operating systems utilize a permissions-based

access system to retrieve data from the microphone. In

most cases, apps must have explicit permission to ac-

cess hardware resources such as the microphone. Each

app follows three steps to configure and use the micro-

phone: (1) user approval, (2) driver initialization, and

(3) audio data retrieval. Windows and macOS require

the user to explicitly provide permission for each app,

which the app retains indefinitely while it runs (unless

the user revokes the permission).

Once the user approves the access for the app, the

app must create an interface to the audio drivers. Some

OSes, like Windows, offer users a visual cue that indi-

cates when the app is using the microphone. But unlike

the WebRTC browser runtime, none of the major oper-

ating systems we are aware of support enforce a software

mute. This lack of an OS-mediated software mute means

each native app must implement its own internal mute

functionality. Even when a software mute is active, apps

can still access the microphone while the user is muted.
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4.2 Analysis Methodology

To understand what happens when the user presses the

mute button on desktop VCA clients, we utilize various

OS-based tools to trace audio data as it is transferred

from the operating system to the app. Our objective is

not just to establish whether the app has permission to

access the microphone when muted. Instead, we aim to

understand whether the app actually reads microphone

data when the user is muted.

Linux

Audio data transfer from the Linux kernel to the VCAs

is mediated through PulseAudio and ALSA. ALSA is a

kernel subsystem that provides a kernel-level interface

to the audio hardware, and PulseAudio is a userland

process that interfaces with ALSA and provides higher-

level features like mixing and multiplexing. All the

VCAs we studied interface with the userland PulseAu-

dio process.

To intercept audio data in transit from PulseAu-

dio to a VCA, we use the DynamoRIO runtime code

manipulation system [1], which allows us to inject for-

eign code into a running process. Our additional code,

written in C, is called each time a fresh buffer of mi-

crophone data arrives from PulseAudio. We write the

audio buffer’s address in the process’s memory space to

a log file. We then trace the buffer addresses from the log

using IDA Pro. The contents of the buffer are the raw

audio bytes from the microphone. DynamoRIO oversees

the process’s execution by loading and running modified

basic blocks one at a time, which substantially slows the

app’s execution, occasionally causing it to crash.

Windows

Although it is possible to track microphone access by

monitoring the system registry [22], we were not able to

track transfers in real time from the microphone to the

VCA. The registry only records times at which an app

opens or closes a connection to an audio device. The

OS registry—linked to a visual indicator in the system

tray—does not distinguish detailed API calls which en-

code information about whether a VCA is reading audio

data or accessing status flags about microphone activ-

ity.For fine-grained and detailed information, we inter-

cept syscalls from the VCA to the operating system.

In Windows 10, syscalls are obfuscated behind a

userland API library which acts as an intermediary be-

tween the apps and the OS. The Windows API library

is similar to the Linux/Unix C library syscall wrappers,

except that there is no one-to-one mapping between the

parameters that the app passes to the API and the pa-

rameters that the API passes to the OS. Instead, the

API functions as a higher-level wrapper around system

calls, and there is no official documentation available

from Microsoft detailing how to call the operating sys-

tem directly.

Windows implements many special-purpose API

functions for actions like accessing the microphone,

which in Linux and Unix are all handled as files. We

develop a two-step process to trace audio data in tran-

sit from the Windows OS to the native VCAs. First,

we use a tool called API Monitor [12] to instrument the

userland API with hooks to log pointers to the inputs

and outputs of several microphone-related API calls. We

then use a live binary analysis tool called x64dbg [4] to

read the contents of the buffers out to a log file. We uti-

lize an anti-anti-debugging library called Scylla-Hide [3],

which hides the fact that an app is being debugged to

prevent the app from crashing.

Chromium

Chromium acts as an intermediate layer between the

operating system and the browser based VCAs. To ver-

ify whether web-based VCAs access the microphone

while muted, we inject our own logging code in the

source of Chromium. We instrument the following three

browser functions in Chromium, which are responsi-

ble for transporting audio from the operating system

to the VCA2. First, the browser initiates audio-related

read_data function, which retrieves the raw microphone

data from the operating system and stores it in a raw au-

dio buffer. Then it calls encode and send_stream func-

tions, which transforms the raw audio into an encoded

stream and transfers the encoded audio stream to the

web-based VCAs.

macOS

An audio subsystem manages microphone data created

by Apple via AVFAudio or the AVAudioEngine inter-

faces [10]. These interfaces have the same purpose and

interact with the audio hardware in userland. VCAs

make a system call to mach_msg_trap within either an

audio interface thread managed by Apple and retrieve

2 Appendix B includes more details about the functions inside

Chromium.
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raw audio bytes from the microphone. All of the VCAs

we studied connect to the microphone using either of

these interfaces and make the same system calls when

reading bytes from the microphone.

To monitor VCAs’ microphone accesses we use a

XCode tool called Instruments [9] and the standard

Unix networking tool tcpdump. Instruments logs all sys-

tem calls and their arguments to a user interface in the

Apple system log. tcpdump records network traffic while

any of the VCAs are running. We attach Instruments

to a live VCA and perform a tcpdump on the networking

interface to extract and monitor the dataflow from mi-

crophone to the VCA. We then observe the results from

Instruments to correlate behavior patterns with with

Windows evaluation. VCAs in macOS behave similarly

to their Windows implementations.

4.3 Findings

To understand how VCAs consume microphone data, we

conducted experiments on each app-OS combo shown

in Table 2. We installed all VCAs and registered two

accounts for each app on each of the four operating sys-

tems. The app-OS combinations that are only accessi-

ble in a browser are tested in Linux on Chromium. We

initiated the meeting app for each meeting experiment

and used the techniques explained above to trace mi-

crophone data from OS to VCA under two conditions:

mute button toggled on and mute button toggled off.

Most platforms we studied display a visual indicator to

alert the user that an app is accessing the microphone3.

We found three broad policies that VCAs follow to read

data from the microphone while muted:

1. Continuously sampling audio from the mi-

crophone: apps stream data from the microphone

in the same way as they would if they were not

muted. Webex is the only VCA that continuously

samples the microphone while the user is muted. In

this mode, the microphone status indicator from an

operating system remains continuously illuminated.

2. Audio data stream is accessible but not ac-

cessed: apps have permissions to sample the mi-

crophone and read data; but instead of reading raw

bytes they only check the microphone’s status flags:

silent, data discontinuity, and timestamp error. We

3 Some Linux distributions do not provide any visual indication

that the microphone is in use.

assume that the VCAs, like Zoom, are primarily in-

terested in the silent flag to tell if a user is talking

while the software mute is active. In this mode, apps

do not read a continuous real-time stream of data in

the same way as they would while unmuted. Most

Windows and macOS native apps4 can check if a

users is talking even while muted but do not contin-

uously sample audio in the same way as they would

while unmuted. In this mode, the microphone status

indicator in Windows and macOS remains continu-

ously illuminated, reporting that the app has access

to the microphone. We found that applications in

this state do not show any evidence of raw audio

data being accessed through the API.

3. Software mute: apps instruct the microphone

driver to completely cut off microphone data. All of

the web-based apps we studied used the browser’s

software mute feature. In this mode, the microphone

status indicator in the browser goes away when the

app is muted, indicating that the app is not access-

ing the microphone.

The notable exceptions to these trends are the Mi-

crosoft VCAs (Teams and Skype) and Cisco Webex.

Microsoft VCAs are much more difficult to trace be-

cause they do not use the standard Windows userland

API. Instead, they directly make calls to the operat-

ing system. Since the Windows syscall interface is un-

documented, we could not determine how Teams and

Skype use microphone data when muted. More interest-

ingly, we observe that Cisco Webex — unlike the rest of

the Windows native VCAs — continuously accesses the

microphone while muted. Using x64dbg, we were able

to trace Webex’s copied audio buffer until that buffer

reaches the stack. We discovered that while the app was

muted, Webex’s audio buffer contains raw audio from

the microphone. In the next section, we focus our data

flow analysis on Cisco Webex in Windows because of its

popularity5 in the enterprise setting and, more impor-

tantly, its unusual behavior.

Recall that our user study reveals two main obser-

vations: participants are split whether the VCAs access

their microphone while muted, and expect them to ac-

cess the microphone only when they are unmuted. Our

results from this section indicate that the participants

4 Except Skype and Teams, which we cannot observe because

they do not use the conventional Windows API.

5 The monthly statistics from Cisco Webex include 600 million

participants and 6 billion calls [42].
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are largely unaware of the operation of the VCAs. More

importantly, the behavior of these apps violates user

expectations. This mismatch between user expectations

and app behavior highlights privacy issues with the de-

sign of the mute button.

5 Webex Case Study

Based on our findings from the previous section, we per-

form an in-depth analysis of the microphone access pat-

tern in Cisco Webex6. We focus on Windows 10 as it is

the most widely used operating system at home and in

enterprise7. As Webex continuously samples the user’s

microphone (when muted), we need to study whether

audio-derived data leaves the local device.

Determining whether audio-derived data from a

VCA is leaving on the network port is not a straight-

forward task because the network flow from VCA to

a server is encrypted. Raw dumps of the network traf-

fic from Wireshark are not informative about precisely

what the network traffic carries to the VCA’s server.

And we know that VCAs send and receive network pack-

ets that do not contain any audio or video data, so

counting network packets cannot give us an indication

of whether audio-derived data is leaving a device while

the VCA is muted. Instead of directly logging network

packets, we need to track how audio data is processed

within a VCA.

5.1 Methodology for Traffic Interception

Fig. 6 depicts the flow of data from microphone to net-

work in native Windows apps. Understanding how a

particular VCA handles data from the microphone re-

quires tracking the data as it traverses the chain of pro-

cessing shown in Fig. 6. Most of the data processing in

the VCAs we study is handled by proprietary DLLs8.

Tracking data through function calls from the main

VCA process to a DLL is unreliable because runtime bi-

nary analysis tools like IDA Pro [2] and x64dbg [4] often

cause the app to crash when they single-step through

function calls to a DLL. And since each VCA uses a

different set of external DLLs, we could not establish

6 We used Webex client version 41.12.3.11 through our study.

7 90% of respondents to our user study used Windows.

8 Dynamically Linked Libraries (DLLs) are the Windows im-

plementation of shared libraries.

a single workflow to analyze all VCAs. Existing tools

such as TaintDroid [18] are able to establish the data

flow within an application in older Android versions.

However, in native applications designed for Windows

and macOS, flow tracing is difficult and sometimes im-

possible.

It is easy to see when an app accesses the hardware

(networking and microphone) by monitoring Windows

API calls (see Sec. 4.2), but we are not aware of any

tool that can automatically follow data through an en-

tire Windows app. Tracking microphone data after each

instruction is not straightforward. Such data initially

exists inside of dynamically-allocated memory buffers.

Upon each access, this data might move to a new buffer

after undergoing a transformation, such as encryption,

compression, or encoding. Further, the new buffers may

originate from different allocator functions to be stored

in the main process’s memory image or in an exter-

nal DLL’s memory image. Race conditions among the

threads in Webex compound the difficulty of tracing:

all memory accesses at a specific address of the stack

require stoppages, logging, and memory analysis, all of

which take time to perform.

However, we do not necessarily need to show a link-

age between every successive subroutine that handles

microphone data in a VCA to demonstrate that audio-

derived data leaves on the network. We can already dy-

namically trace the audio into the app. We need to show

that data from that buffer leaves our machine and is

transmitted to a Webex server.

To design such a system, we first map all of the

outgoing traffic from Webex. The most efficient way

of doing so is to use the Microsoft Network Monitor

(MNM). We observe Webex’s network traffic using the

MNM while the app is muted and unmuted, and we no-

tice a set of packets that are periodically going to a user

metrics Cisco server. Now that we have our packets, we

need to ensure that the audio buffer within Webex is

accessed in the muted state.

Binary tracing on the audio buffer’s read/write ac-

cess using x64dbg always ends up in stack space which

thwarts our further tracing. However, while following

the bytes and logging API calls (from Sec. 4), we noticed

that Webex calls encoding libraries which access in some

time correlation with the audio bytes. We then trace

API calls to encryption methods to verify what is hap-

pening using the API Monitor. We capture all input ar-

guments and output buffers as a log file from these calls

while the user was muted during a Webex meeting. The

log contains timestamps, input parameters to the API

call, and the resulting output buffer. With the results
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Fig. 6. Data flow of audio bytes within a Windows 10 VCA. This pipeline is generalizable across the Windows platform. Our system

attaches to the bolded modules.

Fig. 7. Correlation between audio gain reported by Webex and in-

put audio signal power level (in dbA) when noise removal mode is

enabled. Although we cannot observe the raw audio while muted,

the statistics reported by Webex leak information about the user’s

background noise.

of the function logged, we compare the encrypted buffer

to network traffic leaving the machine and notice a one-

to-one match between the encrypted bytes (from Wire-

shark) and the data sections of network packets from

Webex. Consequently, we link the data regions of out-

going user metrics packets to our post-encrypted output

buffers. Upon observing the input, we notice that the

input arguments in these cases are in plain-text where

detailed data is compressed using base64 encoding. De-

coding the input arguments revealed the packet content

to be a JSON structure9, which contains audio-derived

data and other data elements.

5.2 Findings for Traffic Interception

The data we capture from the API hook is a JSON ar-

ray with unencrypted and unobfuscated attribute names

such as: audioMaxGain, audioMeanGain, audioMinGain,

9 An example of such a structure is here: https://osf.io/szd4x/

and many others. These JSON arrays are transmitted

by Webex once per minute to https://tsa3.webex.com,

a telemetry server, while the user is muted. The names

of these attributes suggest that the JSON array con-

tains audio-derived statistics, most probably connected

to the automatic gain control employed by Webex. Our

aim is to further analyze the attributes to understand

the relationship between the recorded audio levels and

these attributes values when the microphone is muted.

Webex has two microphone modes: music mode and

noise removal mode (the default mode). As the name

suggests, noise removal mode refers to Webex removing

background noise in real-time while the user is speak-

ing. Music mode, on the other hand, transmits audio

as the microphone hears it. We perform a small-scale

experiment to study whether the audio attributes from

Webex network traffic are correlated with the input au-

dio for both microphone modes. We play episodes of the

U.S. TV shows “Friends” and “The Office” into a micro-

phone during a Webex meeting while muted. To isolate

environmental factors, we feed the audio from the TV

shows directly into the Webex meeting through a virtual

microphone interface. We repeated each experiment for

both microphone modes.

We partition each audio file (corresponding to an

episode) into a set of one-minute windows. We then

compute the maximum and average magnitudes for each

window to report their correlation with audioMinGain

and audioMeanGain. Note that the audioMinGain value

would correspond to the maximum observed audio level

because it requires less gain control. Further, the min-

imum and mean values depend the most on the input

audio. On the other hand, the maximum depends more

on the input device and the amount of silent moments,

which are random in each episode.

Fig. 7 depicts the correlation between the estimated

power levels and measured gain values for noise removal

mode. As evident from the figure, the measured and es-

timated values exhibit high correlation; the correlation

with the mean gain is higher as it is a more robust met-

ric to window shifts. Note that we do not have access

to the source code when computing the gain values,

https://osf.io/szd4x/
https://tsa3.webex.com
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so a perfect correlation is unlikely. This correlation is

slightly lower than that of the music mode (Fig. 11 in

Appendix D), implying that the noise removal changes

the input audio. Still, the measured audioMinGain and

audioMeanGain are representative of the audio levels.

5.3 Classification of Background Activities

We established that Webex accesses the microphone

while muted and sends audio statistics to their servers.

Further, this data is highly correlated with the energy

level received at the microphone, and appears to be in-

dicative of the activity happening in the background.

The logical question that follows is: is there a poten-

tial of learning the user background activities from audio

statistics sent to Webex’s servers? In the following, we

describe how these statistics can fingerprint the user’s

background activities, when they are muted.

We analyze the inference of information from user’s

Webex telemetry traffic while being muted. For each

one-minute window, this information contains three val-

ues that change relatively : mean, min, and max audio

gains. An entity with access to this information, such

as Webex’s cloud service or any adversary able to view

this traffic in transit, can perform this analysis to infer

what activity is occurring in the user’s environment.

5.3.1 Data Collection

We focus on the background activities from our user

study of Sec. 3. In Fig. 2, we highlight twelve activities

that happen in the user’s background. Out of these ac-

tivities, we do not consider: (1) silent and physical activ-

ities as they do not result in gain changes, (2) bathroom

as it is unlikely that the user’s microphone will pick up

bathroom noises, (3) street noise as it does not repre-

sent a private activity, and (4) diverse noise such as TV

shows which may contain all of the classes in a single

30-minute instance. As such, our objective is to iden-

tify whether the gain values can fingerprint six types of

activities: (1) music playing, (2) cooking or eating, (3)

people talking, (4) animal sounds (especially dog bark-

ing), (5) keyboard typing, and (6) cleaning.

To simulate the real-world environment with spe-

cific background activities, we choose multi-hour long

ASMR YouTube videos that consist of single back-

ground activity. Each video is different such that the

videos are produced by different people (YouTube users)

doing the same task. The purpose of selecting the videos

Fig. 8. Clusters of audio statistics data color coded by back-

ground activity type. Clusters are visually separable.

in such a way is to minimize the effects from the

recording environment. We play each video over the

air through a Webex meeting, while muting the micro-

phone, and log the extracted gain values.

Our data collection consists of two Windows 10

machines. The first machine plays the videos using its

speaker and hosts the meeting for the other machine.

The other machine runs a Webex meeting client (with-

out any other app running). One machine is equipped

with a Logitech QuickCam Pro 9000 while the other

uses a Logitech C920S Pro HD 1080p webcam for mi-

crophone input. Both machines then join the same meet-

ing room and collect data simultaneously; on both, we

mute the microphone, turn off the camera, and keep the

default microphone settings.

We place the machines in a 12 5 C × 7 5 C × 10 5 C room.

We adjust the distance from the speaker to the two

microphones and generate multiple datasets based on

the varying distances. Webex only allows for meet-

ings to last for 24 hours. For each Webex meeting,

we can extract around 1440 data points, stamped with

the corresponding label. Each data point corresponds

to three features: audioMaxGain, audioMeanGain, and

audioMinGain, representing three user metrics values

from one minute of audio. In summary, we performed

data collection over the course of two months, yielding

over 180 hours of data points.

We visualize the distribution of the six background

activities in Fig. 8. This figure shows that it is feasible

to fingerprint background activities by analyzing the ex-

tracted gain values from Webex. Each activity exhibits
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relatively consistent and distinguishable gain values, de-

spite sampling diverse videos to represent each activity.

5.3.2 Classifier Training

We design a classifier to highlight how the background

activities can be fingerprinted based on the observed

gain values. In what follows, we describe how we curate

the data for this classifier, how we design and train the

classifier, and the results of the classification.

Data Preprocessing

We split the YouTube videos into a development set

(training and validation) and an evaluation set. The two

sets have no overlaps in the videos. We set the distance

from the microphone to speaker as 10 cm, 25 cm, and

50 cm for both sets of videos, whereas we added an extra

distance condition, 100 cm, for the evaluation set.

Table 3 shows the data distribution for the devel-

opment and evaluation sets. We split the development

set into a training set (80%) and validation set (20%)

for hyper-parameter tuning. We split the evaluation set

into two subsets to study the effect of distance. The

first evaluation subset is collected at distances of 10 cm,

25 cm, and 50 cm between the speaker and microphone.

The second subset is collected at a distance of 100 cm;

the data in the second evaluation subset has no over-

lap with the development set in terms of distance and

source videos.

For a C-minutes long YouTube Video, we extract C

data points; each data point is assigned the same la-

bel derived from the title of the video. To accommodate

videos of varying lengths, we limit the input to the clas-

sifier to clips of length =. Thus, we apply a sliding win-

dow with length = to each window and set the moving

stride to be 1. We define each clip as:

Clip =









max8 max8+1 ... max8+=−1

mean8 mean8+1 ... mean8+=−1

min8 min8+1 ... min8+=−1









, (1)

where max8 represents the audioMaxGain for the 8Cℎ

minute in the window.

Model Design and Training

We train a supervised multi-class classifier to distinguish

background activities given clip data of length =. Similar

to Schuster et al. [39], we use a Convolutional Neural

Network (Fig. 10 in Appendix); the network consists

Class Train Val Eval1 Eval2

classical music 168 43 379 184

cooking/eating 500 126 486 169

crowd talking 656 164 1191 568

dog barking 408 103 726 691

keyboard 359 90 1324 580

vaccume/cleaning 544 136 668 572

total (minutes) 2637 660 4774 2764

Table 3. Dataset distribution, development set (training and vali-

dation) and evaluation set (subset 1 and 2).

of two 1-dimensional convolution layers, flatten layer,

three dense layers, and a softmax layer (of size 6). The

design of the convolutional layer takes into account fea-

ture and temporal correlations.

We train the network using an Adam optimizer with

a cross-entropy function as the loss calculation function.

We set the learning rate to 0.001 and initialize model

parameter weights in a random uniform distribution.

As the total length of the training set and validation

is around 3000, we evaluate different batch sizes: 50,

500, 1000, 1500, and 3000. We utilize early stopping to

prevent over-fitting. Because the dataset is imbalanced,

we calculate the precision separately for each class and

compute the average precision score weighted by their

proportion in the validation dataset. Then we use the

weighted average of precision score and accuracy of all

classes as the early stopping criterion. We select the

best-performing epoch index and batch size to train the

optimal classifier for each window length.

We train the network on windows of size =: 3, 5, 7, 10.

Comparing the performance of 4 optimal classifiers for

each window length, we observe that = = 7 (96.13% pre-

cision on validation set) outperforms windows = = 3

(92.26%) and = = 5 (92.98%), in terms of the accu-

racy score and precision score of the validation set. We

achieve 96.90% with windows length = = 10 but we re-

move it in case of over-fitting.

5.3.3 Classification Results

We present the per-class performance of classifier with

window lengths 3 and 7 in Fig. 12 and Fig. 9. For win-

dow size of = = 7, we achieve 77.75% macro accuracy on

evaluation set 1 and 89.03% macro accuracy on evalua-

tion set 2. The average of per class precision for evalua-

tion set 1 is 73.07% while that is 87.47% for evaluation

set 2. Note that evaluation set 2 is collected with 100 cm

microphone to speaker distance; our results suggest that
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the volume level and video content do not considerably

hurt the classifier performance.

For window size of = = 3, we achieve 78.70% macro

accuracy on evaluation set 1 and 78.48% macro accuracy

on evaluation set 2. The average of per class precision

for evaluation set 1 is 79.35% while that is 84.35% for

evaluation set 2. Both classifiers follow our early stop-

ping criteria and achieve high performance on evalua-

tion sets. This performance indicates that, even with

three-minutes worth of measurements, it is possible to

infer the ongoing background activities.

For both window sizes, dog barking, crowd talking,

and cleaning show high precision as well as accuracy on

both evaluation datasets. Some music and people talk-

ing samples are misclassified as keyboard typing on eval-

uation set 1 and 2 respectively, while cooking and eating

shows a lowest performance among the six background

activities. On both evaluation sets 1 and 2, “cooking

or eating” data points are severely mingled with “key-

board typing” as both classifiers cannot accurately clas-

sify these two classes at the same time. We discuss this

aspect in Sec. 6.1.

Finally, we test whether Webex’s noise-canceling

feature affects the statistics reported in log packets. The

results are nearly identical with noise-canceling disabled

or enabled. However, there is a difference between the

logged gain values from Webex when alternating be-

tween the music and noise-removal modes. Therefore, we

only collect and present results based on data collected

with noise-canceling enabled — the default setting —

through our entire classification process.

Our classifier performs well on both evaluation sets

in under various kinds of background noise, recording

environments and volume levels. The gain values logged

by Webex and sent to its cloud server can be used to

distinguish multiple types of background activity.

6 Discussion

In the following, we discuss some of the limitations with

our methodology. We also discuss possible mitigation

strategies, including an improved OS-level permission

model and user education.

6.1 Limitations of the Study

Using live binary analysis tools, we developed a tech-

nique to trace incoming audio data from the microphone

driver to the operating system’s socket API; our meth-

ods are in compliance with each app’s Terms of Service

(ToS). We conducted a thorough evaluation of the We-

bex native Windows app, demonstrating that we could

distinguish a variety of background activities that were

most commonly reported in our user study. We discuss

limitations in (1) our binary analysis techniques, (2) our

dataset and (3) our background activity classifier.

The first limitation is that our binary analysis tech-

nique does not easily generalize to other apps because

different VCAs have different mechanisms for preparing

and encrypting network traffic. Many of the apps we

studied encrypt the outgoing data stream before pass-

ing it to the operating system’s socket interface, making

it impossible to search the binary’s memory image for

the raw microphone data. Only in Webex were we able

to intercept plaintext immediately before it is passed to

the Windows network socket API.

The second limitation is that the findings from the

user study might not generalize to the general popu-

lation. The user study participants are young and edu-

cated professionals, who are potentially more tech-savvy

than the general population. However, the responses to

our questions did not reveal a high level of technical so-

phistication when describing the operation of the mute

button. Fig. 3 shows that handful of participants were

able to correctly describe the operation of the mute but-

ton.

The third limitation is that we collected data for our

Webex case study in only one room. We do not consider

the impacts of the speaker’s volume level or the room’s

acoustic properties that may affect the microphone in-

put. It may be possible to infer a relationship between

the room’s acoustic properties and the audio statistics

that Webex reports using raw audio data acquired while

the app is unmuted.

Finally, our classifier targets single background ac-

tivity at a time, and it does not perform well on all

background activities. Differentiating between multiple

sources is potentially possible, however, due to a lim-

ited data collection scheme we did not evaluate multiple

simultaneous events. Furthermore, the “cooking” back-

ground activity shows a low accuracy score and overlaps

with “keyboard” data points in Fig. 8. Poor performance

of the cooking class appears to be caused by inconsistent

noises that are generated by different cooking activities

like grilling, frying, baking, etc. Another reason for the

poor performance is that cooking and typing sound sim-

ilar at different distances. Also, our data does not ac-

count for noises that are short in duration. Sounds need



Are You Really Muted?: A Privacy Analysis of Mute Buttons in VCAs 15

(a) Validation Set (b) Evalset1 (c) Evalset2

Fig. 9. Background activity classifier performance with window length = 7. The six classes include Classical Music (cm), Cooking or

eating (ck), Talking (tk), Dog Barking (dg), Keyboard (kb), Vacuum or Cleaning (vc).

to last at least a single minute to create a data point;

our techniques cannot evaluate unique but short noises.

6.2 An OS-Level Mitigation

To ensure a trustworthy permission model for micro-

phone access in VCAs, we suggest that operating sys-

tems adopt a “software mute” feature similar to the one

implemented in Chromium and WebRTC. Under that

model, the VCA calls an API function or syscall in the

OS to disable audio traffic flowing from the microphone

driver to the app, putting the OS in charge of the mi-

crophone data while the app is muted.

The OS’s microphone status indicator would serve

as an easy and nontechnical mechanism for users to au-

dit VCAs, ensuring that they use the software mute cor-

rectly. The microphone status indicator should be on

only when the VCA is unmuted and off otherwise. In

our analysis of mute button, we found that the operat-

ing system cannot detect the state of an app-controlled

mute button, and consequently the microphone status

indicator does not correctly reflect whether the VCA is

actively reading data from the microphone driver. Since

the mute functionality is currently implemented in the

VCA instead of the OS, there is no clear policy about

how microphone data should be handled during mute

that applies to every VCA. As we discovered, some apps

read from the microphone at a lower data rate during

mute, but Webex reads from the mic the same way re-

gardless of mute button status.

An OS-mediated software mute establishes clear

rules about when the VCA should be reading from the

microphone, making it clear to the OS when the micro-

phone status indicator should be illuminated and mak-

ing it clear to the user when the VCA is reading from

the microphone.

6.3 VCA Privacy Policies

Few participants in our user study were aware of the

data collection or sharing policies of popular VCAs.

Around 70% of our participants believe that the mute

button blocks the transmission of microphone data

or disables the microphone altogether. VCA service

providers should provide detailed definitions of data col-

lection scenarios rather than generic statements about

how they collect data about their users. All VCAs ac-

tively query the microphone when the user is muted,

and they might have legitimate purposes. For example,

Zoom alerts the user when they try to speak with their

microphone muted. The privacy policies of these services

need to be explicit about microphone access, which is

not currently the case.

We analyzed the privacy policies of the VCAs from

Table 2 to understand how do they describe their pri-

vacy practices. Other than Google [20], no privacy pol-

icy makes an explicit mention to the mute button

and how microphone data is accessed when the user

is muted. The mention of the mute button in Google

Meet’s privacy policy refers to the meeting organizer’s

ability to mute others. Also, the privacy policies are

vague about the data collected when the user is run-

ning a VCA. Some privacy policies, such as Whereby’s

and Google Meet’s, explicitly mention that they do not

collect audio data. Other VCA privacy policies do not

mention collecting audio data at all. Most policies de-

scribe their data collection, in general terms, as “de-

pend[ing] on the context of your interactions” [33]. The

common reasons that VCA service providers cite for col-
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lecting data are to improve “app performance” [13, 33],

to facilitate “research” [33, 44], and for “user analyt-

ics” [13, 33, 44].

Interestingly, Cisco’s privacy policy [13] mentions

audio data in the context of “types of personal informa-

tion that [Cisco] may process.” Cisco’s privacy policy

is not specific about when the collection is happening

and about the purposes of this collection. However, a

different privacy datasheet [31] from Cisco mentions:

Cisco Webex Meetings does not:

Monitor or interfere with your meeting traffic or content.

Our findings suggest that, contrary to the statement in

the privacy policy, Webex monitors, collects, processes,

and shares with its servers audio-derived data, while

the user is muted. To inform Cisco of our investigation

results, we opened a responsible disclosure with Cisco

about our findings. As of February 2022, their Webex

engineering team and Privacy team are actively working

on solving this issue.

7 Conclusion

In this paper, we present the first large scale study of

VCA mute-button privacy. Our user study shows that

users are unaware of Webex listening to their micro-

phone while muted. We examined all widely used VCAs

and desktop operating systems and pinpointed a poten-

tial privacy leakage within Webex. We discovered that

while muted, Webex continuously reads audio data from

the microphone and transmits statistics of that data

once per minute to its telemetry servers. Using runtime

binary analysis tools, we intercepted unencrypted copies

of the telemetry data before it was transmitted. We used

over 180 hours of simulated background noise to build

a data set for classification. Our classifier achieves an

81.9% macro accuracy on identifying six common back-

ground activities using intercepted outgoing telemetry

packets when a user is muted. Operating system vendors

can establish a stronger permission model for the micro-

phone by implementing an OS-level software mute.

Our analysis of the VCAs provide new insight to a

user’s understanding of the mute button. We show that

Webex transmits audio-derived data while the user is

muted. Counter-measures should be supported by poli-

cies and regulations to ensure that users’ private back-

ground activities are not monitored.
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A Model Architecture

Fig. 10. The classification architecture for the background activi-

ties.

During training, we observe that batch size affects

training speed and performance. Our classifier is trained

with batch size of 500, epoch of 400, window length of

7 and learning rate of 0.001 .

B Chromium API

Chromium acted as a layer between the operating sys-

tem and the browser based VCAs. To verify microphone

access we injected our own logging scripts in the source

code of Chromium. Knowing when an app accesses the

microphone requires several functions to be monitored,

the main functions we observed were:

1. PulseAudioInputStream::ReadData() ReadData

indiscriminately reads audio frames from the oper-

ating system into a local buffer, regardless of the

VCA’s mute status (muted or unmuted).

2. opus_encode_native() After receiving a full mi-

crophone audio frame from the operating system,

PulseAudioInputStream::ReadData() passes that

frame to opus_encode_native(), regardless of the

VCA’s mute status.

3. AudioSendStream::AudioSendStream() – transfers

the encoded audio stream to the web-based VCA.

It is also a WebRTC API call that executing code

can call. AudioSendStream only hands the encoded

audio data to the VCA if WebRTC’s software mute

function is disabled.
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These three functions outline a general flow of au-

dio data within Chromium in Linux(as of writing this).

Logging important variable’s states within these three

functions painted an accurate picture of microphone us-

age while the user was muted.

C YouTube Video List

Development Set (Training set and validation set) is

based on YouTube Video List I. Evaluation set is based

on YouTube Video List II.

C.1 YouTube Video List I

– Dogs Barking for 12 hours - High Quality Sounds:

https://www.youtube.com/watch?v=3Go2_VXy1Tg

– ASMR One Hour of Soothing Grill Sounds – Sizzling

Meat:

https://www.youtube.com/watch?v=NKoJDyKo1Q

– Vacuum Cleaner Sound - Extended 10 Hours |

White Noise Sounds - Sleep, Study or Soothe a Baby

:

https://www.youtube.com/watch?v=Ms8oZeywjyM&t=7s

– People Talking Sound effect (10 Hours) :

https://www.youtube.com/watch?v=y32-rwUr0Nk

– Baroque Music Collection - Vivaldi, Bach, Corelli,

Telemann... :

https://www.youtube.com/watch?v=ApSoNBu2wt8

– 10 Hours Typing | Cherry MX Blue Mechanical

Keyboard | Gaming Keyboard ASMR :

https://www.youtube.com/watch?v=h8nmVF0IDCs

C.2 YouTube Video List II

– ASMR Cooking No talking 5 hours deep relaxation

sleeping AD free No ads:

https://www.youtube.com/watch?v=DoRSCsrKbq8

– 1 HOUR Barbecue Sound | Soothing Grill Sounds |

Sounds :

https://www.youtube.com/watch?v=va6AOQy8sWM

– Vacuum Cleaner Sound and Video 3 Hours - Relax,

Focus, Sleep, ASMR :

https://www.youtube.com/watch?v=KilQtE5Nl90

– Vacuum Cleaner Sound & Video 2020 Christmas

Edition 3 Hours :

https://www.youtube.com/watch?v=BFNUEVR_Ps8

– BESTE Baby Einschlafmusik Staubsauger Vacuum

Cleaner Sound // 3 Hours // P :

https://www.youtube.com/watch?v=csHiTtxDmx0

– 1 Hour of Dog Barking :

https://www.youtube.com/watch?v=7ej1ur8amCo

– DOG BARKING 12 Hours Sound Effect :

https://www.youtube.com/watch?v=fecqn9fnG0s

– ASMR Typing | Ducky One 2 Mini | Cherry MX

Blue (1 HOUR) :

https://www.youtube.com/watch?v=vlgch5z4y7Y

– 10 Hours of People talking :

https://www.youtube.com/watch?v=PHBJNN-M_Mo

– Anne Pro 1 Hour Keyboard Typing Sounds ASMR

(No talking, No music, No mid-roll ads) :

https://www.youtube.com/watch?v=qMtIOlS_WAo

D Music Mode Correlation

Results

Fig. 11. Correlation between audio gain reported by Webex and

input audio signal power level (in dbA) when music mode is en-

abled. Although we cannot observe the raw audio while muted,

the statistics reported by Webex leak information about the a

user’s background noise.

E Codebooks

We present our consolidated codebooks to three open-

ended questions (Q1, Q2, and Q3 ) that are indepen-

dently generated by two authors in Tables 4, 5, and 6.
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CodeBook for Q1 Explanation

No Talk No need to talk, so muted; or out of concern, in online classes no need to talk,

No interruption Do not bother others, do not interrupt others from noise

Hide Activities Hide private activities in the background; hide conversations in background

Generic no reason in particular

Comfort The participant just feels more comfortable

Table 4. Codebook for responses to Survey Question Q1

Consolidated codebook - Q2 Activities

Music Talking

Dog Barking Street Noise

Watching TV Physical Activity

Keyboard Bathroom

Cooking/eating Silent activities

Cleaning/Vacuum Online Videos/game

Talking Cleaning/Vacuum

Table 5. Codebook for responses to Survey Question Q2

F Windows API

We can trace the data using the following three meth-

ods, which are part of the Windows API DLLs:

1. BCryptEncrypt in the ncryptsslp.dll library for

encrypting network traffic before sending.

2. IAudioRenderClient::GetBuffer method in the

Windows 10 32-bit Audio interface which fills a local

buffer with raw audio data.

3. IAudioRenderClient::ReleaseBuffer method in

the Windows 10 32-bit Audio interface which re-

leases the buffer space acquired in the getbuffer

method call.

The BCryptEncrypt function is the method that

some VCAs executes right before they send a packet

over the network. After this method is executed, Wire-

shark captures the post-encrypted packet generated

from the BCryptEncrypt function as it leaves the ma-

chine. Thus, being able to capture calls at the method

before sending the packets grants us unencrypted net-

work traffic. The GetBuffer method fills a local array in

the app’s memory space with raw audio data. Using the

argument’s address, we can follow each call and verify if

the audio buffer that an app has is changing even while

the user is muted. The ReleaseBuffer method tells us

how many frames the app filled their own local buffer

with, which gives us a good length of what the app

is seeing. Examining the data we extracted from these

methods we can build a dataset that, with confidence,

observes audio data from the microphone to the net-

work.

G Window Length 5 and 10

We present the confusion matrix of window length 5 and

10 in Fig. 14 and Fig. 13.
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CodeBook for Q3 Description

Generic A generic description of the mute button

Indicator visual cue/icon notifying the user of the muting event

Block sending user experience: block tranmission of audio data to the other clients

Correct the respondent understands the correct operation of mute button

Disable Access The respondent mentions microphone is disabled or cut when mute button is clicked

Suspicious The respondent suspects the app keeps recording their voice after they apply the mute button

Sound detection The respondent mentioned the app notify them of possible speaking when muted.

Table 6. Codebook for responses to Survey Question Q3

(a) Validation Set (b) Evalset1 (c) Evalset2

Fig. 12. Background activity classifier performance with window length = 3. The six classes include Classical Music (cm), Cooking or

eating (ck), Talking (tk), Dog Barking (dg), Keyboard (kb), Vacuum or Cleaning (vc).

(a) Validation Set (b) Evalset1 (c) Evalset2win5

Fig. 13. Background activity classifier performance with window length = 5. The six classes include Classical Music (cm), Cooking or

eating (ck), Talking (tk), Dog Barking (dg), Keyboard (kb), Vacuum or Cleaning (vc).

(a) Validation Set (b) Evalset1 (c) Evalset2win10

Fig. 14. Background activity classifier performance with window length = 10. The six classes include Classical Music (cm), Cooking or

eating (ck), Talking (tk), Dog Barking (dg), Keyboard (kb), Vacuum or Cleaning (vc).
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