ARCHIVED CONTENT
You are viewing ARCHIVED CONTENT released online between 1 April 2010 and 24 August 2018 or content that has been selectively archived and is no longer active. Content in this archive is NOT UPDATED, and links may not function.
 

Extract from article by Frederick Chong, Gianpaolo Carraro, and Roger Wolter

Trust, or the lack thereof, is the number one factor blocking the adoption of software as a service (SaaS). A case could be made that data is the most important asset of any business—data about products, customers, employees, suppliers, and more. And data, of course, is at the heart of SaaS. SaaS applications provide customers with centralized, network-based access to data with less overhead than is possible when using a locally-installed application. But in order to take advantage of the benefits of SaaS, an organization must surrender a level of control over its own data, trusting the SaaS vendor to keep it safe and away from prying eyes.

To earn this trust, one of the highest priorities for a prospective SaaS architect is creating a SaaS data architecture that is both robust and secure enough to satisfy tenants or clients who are concerned about surrendering control of vital business data to a third party, while also being efficient and cost-effective to administer and maintain.

This is the second article in our series about designing multi-tenant applications. The first article, Architecture Strategies for Catching the Long Tail, introduced the SaaS model at a high level and discussed its challenges and benefits. It is available on MSDN. Other articles in the series will focus on topics such as workflow and user interface design, overall security, and others.

In this article, we’ll look at the continuum between isolated data and shared data, and identify three distinct approaches for creating data architectures that fall at different places along the continuum. Next, we’ll explore some of the technical and business factors to consider when deciding which approach to use. Finally, we’ll present design patterns for ensuring security, creating an extensible data model, and scaling the data infrastructure.

 

Have a Request?

If you have information or offering requests that you would like to ask us about, please let us know, and we will make our response to you a priority.

ComplexDiscovery OÜ is a highly recognized digital publication focused on providing detailed insights into the fields of cybersecurity, information governance, and eDiscovery. Based in Estonia, a hub for digital innovation, ComplexDiscovery OÜ upholds rigorous standards in journalistic integrity, delivering nuanced analyses of global trends, technology advancements, and the eDiscovery sector. The publication expertly connects intricate legal technology issues with the broader narrative of international business and current events, offering its readership invaluable insights for informed decision-making.

For the latest in law, technology, and business, visit ComplexDiscovery.com.

 

Generative Artificial Intelligence and Large Language Model Use

ComplexDiscovery OÜ recognizes the value of GAI and LLM tools in streamlining content creation processes and enhancing the overall quality of its research, writing, and editing efforts. To this end, ComplexDiscovery OÜ regularly employs GAI tools, including ChatGPT, Claude, DALL-E2, Grammarly, Midjourney, and Perplexity, to assist, augment, and accelerate the development and publication of both new and revised content in posts and pages published (initiated in late 2022).

ComplexDiscovery also provides a ChatGPT-powered AI article assistant for its users. This feature leverages LLM capabilities to generate relevant and valuable insights related to specific page and post content published on ComplexDiscovery.com. By offering this AI-driven service, ComplexDiscovery OÜ aims to create a more interactive and engaging experience for its users, while highlighting the importance of responsible and ethical use of GAI and LLM technologies.