How to Identify a SaaS Market that Machine Learning Will Disrupt

By and large, the most frequent applications of machine learning in SaaS today are efficiency applications – automating the high-volume rote processes and reducing costs.

Extract from article by Tomasz Tunguz

In SaaS, machine learning has become an essential component to many different products. Whether it’s automating responses to inbound sales queries, identifying expense reports for audit, or surfacing anomalies in data, machine learning improves workflow software. To date, most software imbued with machine learning reduces costs rather than increase revenues.

Why is this the case? Because machine learning is focused on efficiency gains.

By and large, the most frequent applications of machine learning in SaaS today are efficiency applications – automating the high-volume rote processes and reducing costs. Consequently, if you looking to build a machine learning based SaaS company, find a really expensive internal process and automate it.

Additional Reading:

ComplexDiscovery combines original industry research with curated expert articles to create an informational resource that helps legal, business, and information technology professionals better understand the business and practice of data discovery and legal discovery.

All contributions are invested to support the development and distribution of ComplexDiscovery content. Contributors can make as many article contributions as they like, but will not be asked to register and pay until their contribution reaches $5.